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Shearing flow over a wavy boundary 
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A theoretical study is made of shearing flows bounded by a simple-harmonic wavy 
surface, the main object being to calculate the normal and tangential stresses on 
the boundary. The type of flow considered is approximately parallel in the 
absence of the waves, being exemplified by two-dimensional boundary layers over 
a plane. Account is taken of viscosity; but, as the Reynolds number is assumed to 
be large, its effects are seen to be conhed within narrow ‘friction layers ’, one of 
which adjoins the wave and another surrounds the ‘critical point’ where the 
velocity of flow equals the wave velocity. The boundary conditions are made as 
general as possible by including the three cases where respectively the boundary 
is rigid, flexible yet still solid, or completely mobile as if it were the interface with 
a second fluid. 

The theory is developed on the model of stable laminar flow, although it is 
proposed that the same theory may usefully be applied also to examples of turbu- 
lent flow considered as ‘ pseudo-laminar ’ with velocity profiles corresponding to 
the mean-velocity distribution. Use is made of curvilinear co-ordinates which 
follow the contour of the wave-train. This admits a linearized form of the problem 
whose validity requires only that the wave amplitude be small in comparison 
with the wavelength, even when large velocity gradients exist close to the 
boundary. The analysis is made largely without restriction to particular forms of 
the velocity profile; but eventually consideration is given to the example of 
a linear profile and the example of a boundary-layer profile approximated by 
a quarter-period sinusoid. In  0 7 some general methods are set out for the treat- 
ment of disturbed boundary-layer proses: these apply with greatest precision to 
thin boundary layers, but are also useful for the initially very steep but on the 
whole fairly diffuse profiles which occur in most practical instances of turbulent 
flow over waves. 

The phase relationships found between the stresses and the wave elevation are 
discussed for several examples, and their interest in connexion with problems of 
wave generation by wind is pointed out. It is shown that in most circumstances 
the stresses are distributed in much the same way as if the leeward slopes of the 
waves were sheltered. For instance, the pressure distribution often has a sub- 
stantial component in phase with the wave slope, just as if a wake were formed 
behind each wave crestalthough of course actual separation effects are outside 
the scope of the present theory. In  this aspect, the analysis amplifies the work of 
Miles (1957). 
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1. Introduction 
The main purpose of this work is to estimate the stresses on wavy surfacee 

bounding several kinds of shearing flow at high yet finite Reynolds number, 
including uniform shearing flow and flows characterized by a boundary layer. 
To make a tractable theoretical model, the primary motion is taken to be 
parallel and in the direction of the waves, so the disturbance due to the waves k 
two-dimensional and strictly periodic in the x co-ordinate. We neglect the spon- 
taneous fluctuations with respect to time which would usually occur in the real 
case (i.e. due to instability of a laminar %ow or to f d y  developed turbulence); but 
while the theory applies rigorously only to stable laminar flows, we consider there 
is sufficient justification to take the bold step of applying it also to examples of 
turbulent flow, assuming that the mean-velocity distribution is disturbed by 
the waves in approximately the same way as the velocity distribution in an 
equivalent laminar flow. This course seems to bring the work into much closer 
relation to practical problems than if only laminar flows were considered, even 
though admittedly the neglect of interactions between the turbulence and the 
wave motion constitutes a very severe simplification for which a priori theoretical 
justification is difficult to find. However, some justification for this, together with 
a clear statement of what it implies mathematically, was given by Miles (1957, see 
particularly the Appendix) whose work bears closely on the present problem and 
will be frequently cited in what follows. 

Expressions will be found for the surface stresses rather more readily in the case 
of a rigid boundary than in the case where flexure of the boundary allows the 
wave-train to travel in the direction of flow. I n  the latter case the wave velocity 
may equal the fluid velocity at a certain distance from the boundary; and this 
‘critical point ’ becomes a vital factor in the analysis in much the same way as it 
does in the stability theory of parallel flows (see Lin 1955, chapters 3,8). However, 
the results for the latter case have special interest in that they might be applied to 
problems of wave generation by flow over a mobile boundary, for instance wind 
over a water surface. Such problems are commonly approached by considering 
a simple wave-train of arbitrary wavelength and speed superposed on the 
equilibrium state and then finding conditions under which the reaction of the 
disturbed flow is just sufficient to maintain the waves. Knowledge of the forces 
exerted on the wave surface therefore comprises an intermediate step towards the 
solution of the problem; and the remaining steps need be concerned only with the 
matter (e.g. the water) under the action of these forces. Although the subject of 
wave generation is incidental to the main contents of this paper, some features of 
the results will be discussed which are particularly interesting from this aspect. 

Most previous work relevant to this investigation has in fact been directly 
concerned with questions of how the action of wind may give rise to waves of one 
sort and another. Particularly in the vast literature concerning wave generation 
on deep water,t several distinct theoretical models have been used to account for 

t Two other practical problems of wave generation by wind have become important in 
recent times : the first relates to the flutter of membranes and thin pmels, and the second 
to the inetability of liquid films dragged over a solid boundary by a gas stream, the latter 
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flow over a prescribed wavy boundary; and it is desirable to note what relation 
some of these have to the present contribution. 

The classical Kelvin-Helmholtz theory is based on the simplest model (Lamb 
1932, $9 234,268). This assumes uniform flow initially in the air and the water, the 
velocities being discontinuous a t  the interface. Viscosity is neglected, so that the 
disturbed motion arising when the interface is perturbed by a simple wave-train 
can be described by a velocity potential. Apart from the obvious gravity force, 
the only effect of the air stream upon the water surface is a periodic pressure 
which, if the wave amplitude does not vary with time, is in opposite phase to the 
wave elevation and thus acts exactly contrary to the total effect of gravity and 
surface tension. The pressure is proportional to the square of the air velocity 
relative to the waves, and is just the same for a rigid wave-train if a uniform 
primary velocity is assumed for this case also. Such a rudimentary model has 
obvious physical limitations; but we shall see in $ 7 that the pressure component 
given by the Kelvin-Helmholtz theory is consistent with the results of a more 
realistic theory valid for thin boundary layers: it will be shown that this pressure 
component is the only stress remaining in the limit as the Reynolds number is 
taken uniformly to infinity. 

An approach to the problem of water-wave generation similar in principle to the 
Kelvin-Helmholtz theory, but taking account of viscosity, was used by Wuest 
(1949) and Lock (1954); and the model on which their analyses werebased isof the 
type considered in this paper. Laminar flow is assumed in the air and the water; 
and the stability of the motion with respect to wavy disturbances is investigated 
in the way usual for problems of boundary-layer stability (i.e. the velocity profile 
is assumed to have negligible variation over distances comparable with the 
wavelength, so that linearized equations of motion of the Orr-Sommerfeld type 
are obtained-see Lin (1955, chapter 5)). The velocity profiles considered by 
Wuest were arbitrarily chosen as rough approximations to actual boundary-layer 
profiles; but Lock considered an exact profile which he had previously calculated 
for a boundary layer starting from a certain point upstream. Now, as both the air 
and water motions can be separately unstable even in the absence of the additional 
factor presented by the mobility of the interface, stability analyses of this sort are 
extremely complicated. Thus, although Lock’s results are undoubtedly valuable, 
they are of such complexity that it would seem unlikely they could ever be checked 
by experimental observation. In  this paper we shall study disturbed laminar 
flows of the kind treated by Lock; but we shall ignore possible instability of the 
flow and accordingly take the disturbance to be stationary relative to the waves 
on the boundary, thus enabling us to study much more clearly the interesting 
effects due specifically to the presence of the waves. 

Another model which is to be taken as an example in this paper has previously 
been used by Feldman (1957), who considered a stability problem akin to Wuest’s 
and Lock’s but for a horizontal liquid film in contact with a semi-infkite air 

problem having importance in chemical engineering and in connexion with the cooling of 
rocket motors (Knuth 1964). As in the water-wave problem, the main difficulty in these 
two also is to account for the disturbed air flow; and so the present work may be said to 
have equal bearing on all three. 

11-2 
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stream. He also assumed parallel laminar flow, but introduced the simplification 
that both fluids are initially in uniform shearing motion (i.e. plane Couette flow). 
This rules out the occurrence of ‘self-instability ’ of the air stream as encountered 
in Lock’s work, since semi-infinite Couette flow is completely stable (this was 
proved by Zondek & Thomas (1953)). But, as Feldman was careful to point out, 
this model of the air flow is an extreme idealization. One might expect that for 
results calculated on this basis to apply in practice, the actual velocity profile 
would have to admit a linear approximation to a distance of at  least the order of 
a wavelength from the interface; and this requirement is certainly not met in 
experiments such as those of Knuth (1954), in which the air flow is turbulent and 
the slope of the profile varies very rapidly near the interfacewhereas the waves 
observed are much longer than, say, the thickness of the viscous sublayer. 
Nevertheless, the linear-profile model has the unique merit that, while it is 
a physically possible example of viscous shearing flow, the respective form of the 
Om-Sommerfeld equation (which determines the structure of a periodic disturb- 
ance) can be solved exactly. And so there is generally much to be said in favour 
of using this fairly manageable model as a first step towards clarifying physical 
problems concerned with shearing flows. 

In  Q 5 we shall consider uniform shearing flow as a first example on which to try 
our general theory. The equations obtained in this example for the stresses on 
fixed or very slowly moving waves reduce to attractively simple approximate 
forms, whose compactness invites a generalization by Fourier’s theorem. This is 
done in Q 8, mainly to illustrate an interesting ‘quasi-sheltering ’ effect (see three 
paragraphs below) depending on the phase relations between the stresses and the 
boundary displacement, an example being provided by a single-humped per- 
turbation of the boundary shaped like the graph off(x) = (x2+ b2)-1. 

We next recall what has been done in the past to account for turbulent flow 
over waves. In  attempts to explain water-wave formation several theories have 
been put forward which recognize in some way the turbulent character of the 
wind; but there are in general only two courses open towards workable theories, 
each of these having to start from a bold simplification of the physical problem. 
One of these is based on considerations quite different from the material of this 
paper: the effects of the waves on the air flow are neglected entirely, and attention 
is fixed on the response of the water surface to random fluctuations of normal 
pressure, which are taken to be the same as on a plane surface.? 

The alternative course which has been followed by a number of authors 
interested in water-wave formation is to deal with the turbulent flow in much the 
same way as we shall. The turbulence is neglected except inasmuch as it may 
determine relevant properties of the mean shear flow, and attention is fixed on 
effects arising from the wavy disturbance of the air stream. The best-known 
example of this approach is the sheltering theory of Jeffreys (1924, 1925), which 
makes use of the principle that an already existing wave-train will grow if the wind 
supplies energy to it at a rate greater than that of viscous dissipation in the water. 
Inertial effects and tangential stresses due to the wind are neglected; and the only 

t Phillips (1967) has published a new theory on these lines, giving an illuminating 
account of water-wave generation by a random pressure distribution. 
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property of the normal pressure distribution needed for the calculation of the 
average energy supply is the Fourier component in phase with the wave slope. 
This component is supposed to arise as the flow separates from the leeward side of 
each wave, causing the pressure there to be lower than on the windward side; and, 
to express its magnitude, a sheltering coefficients is introduced. Jeffreys’s theory 
provides no estimate of s, and was for a long time held in doubt since experimental 
estimates of s by use of fixed wave models (e.g. Motzfeld 1937) give values much 
too small to explain observed rates of wave growth. 

However, this objection has been removed by the recent work of Miles (1957), 
who showed theoretically that even when there is no separation of the flow (i.e. 
no sheltering in the sense in which this term is usually understood) sufficiently 
large values of s can occur when there is a critical point away from the wave 
surface in a region of the velocity profile where the curvature is large negatively. 
The development of a substantial pressure component in phase with the wave 
slope is related to the phase discontinuity in the longitudinal velocity which is 
well known to occur across the friction layer surrounding the critical point 
(Tollmien 1929). Thus, the value of s for a moving wave may greatly differ from 
that for a similar fixed model, which has the critical point right at the boundary. 
It is remarkable that the ‘ quasi-sheltering ’ effect discovered by Miles is indicated 
by linearized perturbation theory, and is therefore quite distinct from the essen- 
tially non-linear effect (i.e. the formation of a wake)implied by the termsheltering. 
For the velocity profile, Miles took the ‘universal’ logarithmic law applicable to 
turbulent boundary layers at very large Reynolds numbers. 

Miles’s paper appears to have greatly invigoxated the ‘stability theory’ of wave 
generation by turbulent wind? (the description ‘sheltering theory ’ now seems 
inappropriate); and the present investigation owes largely to the stimulus of his 
work. In  part, the following analysis will amplify Ivtiles’s treatment of disturbed 
turbulent profiles: for instance, all the surface stresses will be estimated, and the 
significant effect of viscosity at the wave surface will be examined. We shall see 
that both the normal and tangential stress distributions may in some circum- 
stances be such as to do work on a moving wave, and their effectiveness in this 
respect will be compared: this property will be disclosed for a linear profile as well 

t It seems evident that the two types of theory of which respectively the contributions 
of Phillips and Miles are the most advanced examples are both relevant to natural cases of 
wave generation by wind, despite the greatly different character of the two. They can be 
regarded as alternatives for ad hoc application according to the nature of the observed 
waves. For instance, if waves are seen to develop which are fairly regular and long-crested 
and which travel much slower than the wind, then clearly a stability theory is the more 
likely to be useful (and the present work a possible help). To mention just one instance 
where observation suggests that effects of the disturbed mean flow predominate over effects 
of the turbulence, the author haa noticed that when a turbulent air-stream blows over 
a thin layer of highly viscous liquid like syrup the free surface may not be visibly agitated 
by the turbulent pressure fluctuations acting upon it ; but when the wind speed is increased 
beyond a certain limit, regular long-crested waves of the order of 1 cm in length suddenly 
appear. When a of water is observed in the same circumstances, some apparently 
random agitation is always discernible. Nevertheless, long-crested and fairly slow-moving 
waves arise a t  a wind speed rather less than before; and in all respects except the smoothness 
of the surface, their character seems much the same aa of the waves on the more viscous 
liquid. 
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as for boundary-layer profiles, although the former case is special in that viscous 
effects at the boundary are primarily responsible for ‘quasi-sheltering ’. In  each 
case, these viscous effects cause ‘quasi-sheltering’ when the boundary is rigid 
(i.e. when thereis no critical point away from the boundary, so that the mechanism 
considered by Miles is absent). 

To conclude this introduction, we must refer again to the matter of flow 
separation from the wave surface, which is probably the most vital consideration 
of all regarding the practical usefulness of the present linearized theory. It is to be 
expected that any actual flow at fairly high Reynolds number wi l l  separate if the 
waves are made steep enough or the wave-train long enough; but the value of our 
analysis rests on the supposition that the flow will remain attached to a fairly 
short wave-train of reasonably small steepness. In  this respect applications to 
turbulent flows are more secure than to laminar flows, which tend rather readily 
to separate when given a wavy disturbance (Quick & Schroder (1944) showed this 
theoretically by use of numerical methods). The experiments of Motzfeld (1937) 
are a source of encouragement here. He in turn fixed four different rigid wave 
models in a wind tunnel, and measured pressure and velocity distributions 
throughout the whole flow-which was fully turbulent. The results obtained with 
the first model, which was a sinusoidal wave-train of 0.75cm amplitude and 
30 cm wavelength, are of particular interest aR present. The pressure distribution 
over the wave surface was found to  be very approximately sinusoidal, &a it should 
be according to our theory; and no evidence of separation was found.-The next 
two models were steeper waves, the ratio of wavelength to amplitude being for 
both about 20; and the pressure distribution was found to be slightly skew in the 
windward direction. However, there was still no evidence of separation, as may 
be seen from Motzfeld’s diagrams of the streamlines following the contour of the 
waves. The fourth wave model was sharp-crested; and the flow was observed to 
separate from the wave crests and re-attach close to the troughs. A comparison 
between some of Motzfeld’s measurements on his first wave model and results 
from the present theory will be made in 0 7, a reasonable agreement being found. 

It must be noted that Stanton, Marshall & Houghton (1932) also measured 
pressure distributions over wave models in a wind tunnel and found results 
markedly different in character from those of Motzfeld: the discrepancy has been 
commented upon by Ursell (1956). For their first series of measurements, the 
model was a train of twenty-seven sine waves, whose amplitude and wavelength 
increased linearly with distance but kept a constant ratio of about 0.1: the length 
of the first wave was 5.1 cm, and that of the last was 21-6cm. The pressure 
distributions were measured over the tenth and twenty-seventh waves for various 
wind speeds. For their second series of measurements, two models were used on 
which the waves were of constant wavelength, the ratio of amplitude to wave- 
length being about 0.2. Pressure distributions were measured at 40 and 80 wave- 
lengths from inlet, and were found to be much the same in the two places. These 
various observations differed from Motzfeld’s in that the pressure distributions 
were very irregular, being not even roughly sinusoidal: for instance, Fourier 
analysis of a typical distribution shows the amplitude of the second harmonic to 
be of the same order of magnitude as the fundamental amplitude. Thus, it seems 
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evident that in these experiments there was turbulent boundary-layer separation 
from the wave profles. That this should have occurred here and not in Motzfeld's 
experiments with a sinusoidal prof3e is readily accountable to the fact that the 
waves were considerably steeper (particularly in the second series of measure- 
ments), and also to the fact that the wave-train was much longer (Motzfeld's 
results considered in $7 were obtained from a model only three wavelengths 
long). These considerations suggest that the present theory should preferably 
be restricted to waves with an amplitude to length ratio less than, say, about 
0.03 or 0.02 and with fairly short fetch. 

2. Formulation of the problem 
We shall express all variables in non-dimensional form, implying that the units 

of length and of velocity are to be taken as a certain length Z and velocity U, 
characteristic of the physical problem : thus, for instance, any symbol representing 
a velocity is to be interpreted iinally as a multiple of U,. Time is made dimension- 
less on the understanding that Z/U, is the unit; and stresses are considered as 
multiples of put, p being the density of the fluid in question. The Reynolds 
number R = U,Z/v, where Y is the kinematic viscosity, becomes an important 
parameter in this problem since the effects of viscosity will not be ignored. 

y o r 7  -f 

Y 
FIGURE 1. Definition sketch showing the undisturbed velocity profile 

as it would appear to an observer moving with the wave. 

It is convenient to use a frame of reference in which the wave upon the bounding 
surface S is stationary. Thus, with respect to Cartesian axes (2, y )  taken as in 
figure 1 and moving at speed c with the wave, the velocity parallel to x in the 
primary flow above the surface S is U ( y )  - c, where U(y) is the velocity relative to 
the material surface (which in this frame of reference slips to the left with speed c). 
The equation of S is taken to be 

y = (2.1) 

with the understanding that the real part represents the physical boundary. The 
amplitude a is assumed to be small compared with the wavelength 2n/k, so that 
(ku)2 is negligibly small; and this is intended to be our only restriction on the size 
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of the wave. However, a difficulty now appears on consideration of the boundary 
conditions which apply at S. Large velocity gradients are to be expected right at 
this boundary (i.e. U’(0) will be large), so that the trace of equation (2 .1)  upon the 
primary velocity profile may represent large velocity variations notwithstanding 
the present assumption about the smallness of a. But two boundary conditions 
relating respectively to the normal and tangential velocity components must be 
satisfied at S. It would seem therefore that a linearized theory along the lines so 
far suggested would require for accuracy a further restriction on the wave ampli- 
tude, namely, that a be small enough for the curve (2 .1)  to be confined to a region 
over which the variation of U is small. For instance, a would need to be consider- 
ably less than the width of the viscous sublayer in a turbulent boundary layer. 
This restriction would be too severe for a realistic theory; but fortunately it can 
be avoided by a slight change in approach to the problem. 

A way out of the difficulty is suggested by a well-known property of boundary 
layers along curved walls (see, for example, Goldstein 1938, p. 119; or Schlichting 
1955, p. 98). I n  a region where the wall curvature is fairly small and there is no 
large adverse pressure gradient, the changes in the boundary-layer proiile a t  
different positions along the wall are not large if measured relatively to the wall, 
being in fact of the first order in the curvature. In  other words, the flow tends to 
follow the contour of the wall in such a way that the main features of the boundary 
layer, which may include a sharp velocity gradient right at the wall, are largely 
preserved-or at least undergo no more than first-order changes in a reasonable 
distance. Now, iffor the present problem use is made of a curvilinear orthogonal 
system of co-ordinates in which the wave S is a co-ordinate line, the disturbed 
flow can be described by a perturbation representing only the diflerence between 
the actual flow pattern and the pattern formed by ‘bending ’ the primary profile 
to follow the wave (i.e. the latter is simply U(q) ,  where q is the curvilinear co- 
ordinate perpendicular to S). This perturbation will be of the order of ka at most; 
and since the boundary conditions on it will not entail an ‘overlapping’ of the 
primary flow pattern as before, there need be no additional restriction on the 
magnitude of a in order to satisfy these boundary conditions with sufficient 
accuracy. The reasoning outlined here will perhaps be made a good deal clearer by 
what follows. 

We take orthogonal co-ordinates ( 6 , ~ )  defined by 

in terms of which the equation of S is, to the first order in ka, simply 7 = 0. The 
Jacobian of this transformation is 

to the first order. Note that incidentally E and 7 are the same as the velocity 
potential and stream function for irrotational wave motion in an inviscid fluid 
(of. Lamb 1932, $233). 
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Let $ denote the stream function for the present case, its form in the absence 
of waves (i.e. a = 0, 7 = y )  being 

For the disturbed flow, $ may be expressed in the form $o plus a periodic per- 
turbation proportional to a: thus we write 

$tE, 7) = $0(7) + a{F(7) + [U(7)  - CI e - 9  ei% (2.4) 

where the function P(7) has yet to be determined. (The inclusion in (2.4) of the 
term with ( U - c )  as a factor simplifies the ensuing work to some extent; it can be 
included arbitrarily since P(7)  is unspecified.) Following from (2.4), the velocity 
components parallel to and 7 are given respectively by 

u = J&$ = U - c + a{F’ + U’ e+} eikE, 

v = - J&$E = - ika{F + (U - c) e-k3 eiM, 
(2.5) 1 11 

where the subscripts denote partial differentiations, and the vorticity is 

5 = J{$6E + $,,?} = U’ + a{F” - k2F + U” e-kq} eiK. 

Consider now the boundary conditions to be satisfied by the velocity com- 
ponents at S, that is, a t  7 = 0. If S is a solid boundary (which need, of course, be 
flexible i fc  is not to be zero), a requirement for the primary flow is that U(0)  = 0. 
Two boundary conditions then apply to the disturbed velocity components 
expressed by (2.5). First, the normal velocity v at S must be zero since the wave is 
stationary; and hence (2.5) shows that 

F(0)  = C. (2.7) 

Secondly, the tangential velocity u must satisfy a condition of non-slipping 
relative to solid particles fixed in S; and this requires that 

F’(0) = - U’(O), (2.8) 

which follows from (2.5) on consideration that, at the wave surface, u = - c to the 
first order of approximation in ka. 

These boundary conditions can easily be modified to include the case where S is 
the boundary of another fluid, so that the tangential velocity along S may vary. 
Clearly, by adjusting the frame of reference the velocity of the undisturbed 
interface can be put equal to -c ,  i.e. U(0)  = 0 as before: the velocities in the 
second fluid must then take negative values in order that the shearing stress 
due to the primary flow should be continuous across the interface. It may also 
be apposed that the variable component of the tangential velocity can always be 
expressedin the form /3aeiM. Accordingly, the boundary condition (2.7) remains 
unchanged; but (2.8) is replaced by 

F’(0) = - U’(O)-/3. (2.9) 

The cases now covered may be summarized as follows: 
(i) The boundary is solid and rigid; thus c = 0 and /3 = 0. 
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(ii) It is solid but flexible (e.g. an inextensible membrane); thus a wave can be 
propagated along it with bite c, but 1 = 0. 

(iii) It is an interface between fluids; thus both c and 1 may be non-zero, and 
are likely to depend on the properties of the second fluid.? 

The validity of these boundary conditions depends only on Ea being small: that 
is, they are consistent with the linearized approximation to $ expressed in (2.4). 
The difficulty mentioned earlier has therefore been avoided, which is due essen- 
tially to the fact that the expressions (2.8) for the velocities involve U(r]) rather 
than U(y) as they would if developed in Cartesian co-ordinates: in the latter case 
the boundary conditions would be applied on y = aeikx instead of r] = 0. For 
a boundary-layer flow, U’(0) will become infinite in the limit as the Reynolds 
number R --f co; but we can expect the present method of linearization to remain 
valid at indefinitely high Reynolds numbers, since R + co is precisely the condi- 
tion for vorticity to be constant along streamlines, e.g. the streamline r ]  = 0. 

Expressions will now be found for the stresses acting upon S. Their derivation 
is slightly more complicated in curvilinear rather than Cartesian co-ordinates; 
but there is no need to go into details of the derivation here, since the calculations 
require merely a straightforward application of the theory of general orthogonal 
co-ordinates as is explained in many text-books (e.g. Goldstein 1938, $39). It will 
be convenient to express the stresses in terms of $ rather than of the velocity 
components. 

Consider first the shearing stress 7, which according to a well-known result is 
the same as R-l($vu - $,,), where R is the Reynolds number. (This is, of course, 
the dimensionless form of 7 implied by the remarks a t  the beginning of this 
section.) An alternative expression involving derivatives of $ with respect to f 
and r ]  is found to be 

7 = R-Y(f: - E;) w?p) - + 4fx fll &q - 27XU $6 + 2 & /  $q>- (2.10) 

Substituting (2.2) and (2.4) into (2.10) and omitting second-order terms, we get 

T = R-l[ U‘ +a{$’’’ + k2P + U” e-kg} e iK] .  (2.11) 

This is evaluated at r ]  = 0 to give the surface shearing stress, say 7*. The first 
term in the expression for 78 is R-W‘(O), which is the stress exerted by the 

t Case (iii) needs special qualification when we apply the theory to turbulent flows. 
Turbulent fluctuations in the &st fluid will always in some degree be transmitted to the 
second; and if the densities and viscosities of the two fluids were not much different, 
Reynolds stresses would have a predominant effect on the interface, and there would be no 
viscous sublayer as in the case of a solid boundary. But in the following analysis we need 
to msume a viscous layer at the boundary; and so in case (iii) we imply that the second 
fluid is comparatively very viscous and dense (e.g. water if the first fluid is air). It is then 
reasonable to assume that the flow has a structure similar to one over a solid boundary, 
including a definite sublayer. In  fact, for the case of air-water, the main effect of turbulence 
in the water would appear to be only the resulting roughness of the surface, whose equiva- 
lent ‘roughness length’ affects the air profile in the well-known way (e.g. see Miles 1957). 
Therefore, provided the surface agitation is mild enough for the air flow to remain ‘aero- 
dynamically smooth’ (i.e. the sublayer thickness exceeds the height of the random surface 
disturbances), the mobility of the boundary remains a factor of secondary importance in 
relation to the structure of the air flow. 
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undisturbed primary flow. If the variable part of r, is denoted by T,a eig and the 
boundary condition (2.7) is introduced, then the factor T, is given by 

T, = B-’{F’’(O) + kzc + U”(0)). 

-P + 2R-1J-1(f; - 6 3  ((6 - 6;) $& + f x  f u  $& + rz7u&q + fx, $6 + Txu $& 

(2.12) 

The component of direct stress in the 7-direction is expressible in the form 

where p denotes the pressure. For convenience gravity forces are neglected, being 
independent of the hydrodynamic forces of present interest; but it is obvious that 
if the y-direction is upward, the (dimensional) pressure variation on X due to 
gravity is simply -pgaei@. On substituting (2.2) and (2.4) and evaluating this 
expression at = 0, we find that the normal stress cr, acting downward on 8 is 
given by 

CT, = p8 + ZikaR-lF’(0) eie 
= ps  - 2ikaR-l{ U’(0) + p} e ie ,  (2.13) 

where ps  is the pressure at X, and where the second equality follows from the 
boundary condition (2.9). Here the term in R-1 is completely known; but this 
term will appear later to be negligible within the overall scheme of approximation 
to be adopted. 

To h d  p,, we consider the Navier-Stokes dynamical equations expressed in 
terms of the co-ordinates (& 7) and with $ andp as dependent variables. The two 
equations of motion respective to the f and 7-directions are found to be 

J W q $ q S  - $&q) + Sqki + $;I = -2% + R-lSq, (2.14) 

J(  - $q $66 + $6 $&) + 4J,($f + $;I = --Pq - B-lCp (2.16) 

in which [is to be related to $ by equation (2.6). The substitution of (2.3), (2.4) 
and (2.0) into (2.14) and (2.15) leads to two alternative equations forp in terms of 
F and its derivatives. The pressure variations due to the wave disturbance may 
be considered distinctly from those in the primary flow, 80 that we may put 
p = P(y)  a eiM and therefore p S  = ikp. Hence, the first equation for p (obtained 
from (2.14)) gives 

P = U’F-(U-c)  F‘-i(k”-l{F‘“-kzF’+(U’‘’-kU”)e-k~). (2.10) 

Alternatively, P can be found by an integration of (2.15) with respect to 7, using 
the fact that the disturbance of the flow vanishes for 7 -+ co. The result then is 

P = kzIqm( U - c )  Fdy  -i(kR)--l (k2F’ + Iqm (k4P- E 2 U “  e-kq) dq). (2.17) 

Either of these results, which obviously must be equivalent, may be evaluated 
at 7 = 0 to give P(0) = P,, Hay, the amplitude of the surface pre8surep,. However, 
this step is postponed until 9 3 where the alternative expressions for P, will be 
shown to have an interesting physical interpretation. 

Since T, and P, may have real and imaginary parts, they express both the 
magnitudes of the respective stresses and their phases in relation to the wave 
on the boundary. As P(0) and P‘(0) are determined by the boundary conditions, 
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it is seen from (2.12) and (2.16) that the problem is reduced essentially to Snding 
P"(0) and F"(0). This is by far the most difficult part of the task. 

At this point it is suitable to list some assumptions which can be made on 
physical grounds regarding the magnitudes of certain quantities arising para- 
metrically in these calculations. The assumptions form the basis for various 
approximations which will be introduced later on; and there is some advantage in 
setting them out beforehand for reference. They can be expressed symbolically 
as follows: 

(2.18) 

The first three of these rest essentially on the single assumption of large 
Reynolds number; but (iv) is rather special, and will be assumed only when the 
critical point is considered to lie well away from the boundary. Condition (iii) is 
totally satisfied if S is a rigid or flexible solid boundary, and is quite amply 
satisfied if S is an interface with a comparatively viscous second fluid (e.g. water 
if the main fluid is air). The basis for these various assumptions will be fully 
examined in later parts of the discussion. 

1 (i) kR % 1; 

(iii) U'(O) B p; 
(ii) [kRU'(O)]* B k ;  
(iv) (kBc3)* + U'(O). 

3. The function F 

equation for Pfq) 
The elimination of P between (2.16) and (2.17) leads to the fourth-order 

(U - C) (P" - k2F) - U"P = (ikR)-l {Piv - 2k2P" + k4F + ( Uiv - 2kU") ~ ~ 7 1 ,  (3.1) 

which is seen to be reducible to the Om-Sommerfeld equation by the omission of 
the terms in U on the right-hand side. It will now be shown that this omission is in 
fact justified. We note first that the assumption of a parallel primary flow implies, 
strictly speaking, that Uiv = U" = 0 everywhere, since U must itself be a solution 
of the Navier-Stokes equations. However, we do not intend to conbe  the 
argument to velocity profles of the strictly parallel sort (i.e. linear or parabolic 
ones), and we therefore assume that U = U(y) is an adequate approximation for 
many distributions, particularly of boundary-layer type, whose variation with 
x is small over several wavelengths. This assumption has commonly been intro- 
duced in theories of boundary-layer stability, and its validity amply confirmed 
(see, for instance, Lin 1955, Q 5.1). 

A more cogent reason for simplifying (3.1) is forthcoming when another 
familiar point from stability theory is recalled. Suppose that the'primary dis- 
tribution is characterized by a boundary layer whose thickness is selected as the 
reference length on which the Reynolds number R is based (cf. Schlichting 1955, 
p. 316). We note that U" and Uiv are then notof a greater order of magnitude than 
U or U", and also that by the boundary conditions F is of the same order as U or c. 
Hence, as the parameter (kR)-l multiplying the right-hand side of (3.1) is taken 
to be very small (assumption (i) in (2.18)), it is seen that this side of the equation 
plays an insignificant part in determining F,  except in regions where Fiv becomes 
exceptionally large-certainly much larger than Uiv and U".  One such region 
may occur very close to the boundary, where viscosity becomes important by 
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virtue of the non-slipping condition; and the only other possibility is a region 
around a so-called 'critical point' at which U = c and the 'inviscid' equation 
(i.e. (3.1) with the right-hand side zero) therefore has a singular point. Accord- 
ingly, the equation for P can be taken to be the Orr-Sommerfeld equation 

(U - c) (H" - k2P) - U P  = (ikB)-1 (P - 2kZF + k 4 q  (3.2) 

with the understanding that the right-hand side is strictly accurate only for 
linear or parabolic velocity profiles, but is negligible anyway except at 'friction 
layers '-where the most important viscous term (ikR)-l Fiv is alone an adequate 
approximation to the right-hand side of (3.1). 

Equation (3.2) has been studied extensively as part of stability theory, some 
details of which are immediately useful for the present problem.. Note, however, 
that the present P is rather different from the dependent variable in the Orr- 
Sommerfeld equation as it occurs in stability theory: there y is usually the inde- 
pendent variable, here it is 7. 

We first recall some well-known properties associated with critical points. Let 
$(7) be the solution of 

( U - C ) ( $ " - k ~ $ ) - U " $  = 0 (3.3) 

(i.e. the inviscid form of (3.2)). At a position 7 = rC, where U = c, this equation has 
a singular point, and consequently 9 ceases to be an approximate solution of 
the complete Orr-Sommerfeld equation, even with (kR)-l very small. Since 
U"/( U - c) has a simple pole at 7 = re, the formal expansion of $ about 7 = qC 
involves a term in (7 - re) log (7 - qC);  and therefore the correct form of $ as an 
approximate solution away from the critical point is in doubt until the appro- 
priate branch of the logarithm is decided. This ambiguity can only be resolved by 
consideration of the complete equation (3.2); in other words, account must 
necessarily be taken of the effects of viscosity in the vicinity of the critical point. 
Tollmien (1929) first demonstrated that if the logarithm is expressed as log (7 - qC) 
for T,I > yC, it is to be replaced by log (7c - 7) - in for 7 < yC. (This matter is one of 
the most vital and frequently discussed topics in stability theory; and it can be 
said that the lucid account given originally by Tollmien is one of the major 
contributions to modern fluid mechanics.) When this adjustment is made, $ can 
confidently be taken as an approximate solution of (3.2) applying either side of 
the critical region, the error being known to be O(l/kB).  We shall adopt this 
approximation for cases where c is substantially greater than zero: that is, the 
critical point occurs well within the fluid. Attention is confined to velocity 
profiles in which U increases monotonically with 7 (i.e. profles of boundary- 
layer type), so that there cannot be more than one critical point. For the case 
c + 0 where the critical point occurs at or very close to the boundary, special 
treatment will be needed. 

The inviscid solution $ may not be a valid approximation close to the boun- 
dary S, since viscosity has a significant effect there as a result of the boundary 
condition on the tangential velocity. Mathematically speaking, this also follows 
clearly from the fact that the solution of a second-order equation (2.3) cannot in 
general satisfy the condition that qi --f 0 far from S and also two boundary condi- 
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tions at S. Accordingly, we express an approximation to the complete solution F 
in the form 

F ( r )  = W) +f(r) ,  (3.4) 

wheref(7) is the appropriate rapidly varying solution of the full Orr-Sommerfeld 
equation: this must be the solution which diminishes rapidly with increasing 7, 
since the other rapidly varying solution (which may be shown to increase in 
exponential fashion with 7) is inadmissible physically (see Tollmien 1929; or Lin 
1955,s 3.4 or $8.5; or Schlichting 1955, p. 327). The region wheref(7) is significant 
may suitably be called the ‘wall friction layer ’. 

The boundary conditions (2.7) and (2.9) can now be rewritten as 

and these expressions can be combined to give 

q5”O) - [f’(O)/f(O)l W) = - T ( 0 )  -P- c[f’(O)/f(O)l, (3.7) 

which may be regarded as the boundary condition on 4. This will be examined in 
fj 4. Note that iff’(O)/f(O) % T(O)/y5(0), this conditionis approximately $ ( O )  = c, 
which is the form of the kinematical boundary condition which would arise if 
viscosity were neglected entirely. Note also that may be neglected in (3.7) 
according to assumption (iii) of (2.18). 

Let us now reconsider the expressions (2.16) and (2.17) for the pressure ampli- 
tude P. When evaluated at 7 = 0, (2.16) gives 

P, = k2 (U-C)Fd~+O(JcR)-’ .  (3.8) s,” 
The terms which are O(kB)-l may be neglected according to assumption (i) of 
(2.18); and, as a further approximation (which in fact can be shown to be well 
within the limits of the previous one), F will be replaced by q5 in the integral. The 
latter step can be taken because the integral is insensitive to the contribution 
from the wall friction layer-which is the only place where F = q5 is not a good 
approximation (note that it is good through the friction layer about the critical 
point, even though the derivatives of $ cease to be valid approximations there). 
Thus we get 

P, = k2 (U-C)$dr .  (3.9) s,” 
A result of this form might be obtained by neglecting viscosity from the start; 

but now viscosity can affect P, through the boundary condition (3.7) on q5. The 
form of (3.9) suggests the attractive physical interpretation that the variable 
pressure at the boundary is, so to speak, generated by the cumulative action of 
the disturbance over the whole flow field, and is not particularly sensitive to the 
state of affairs near S. This is a familiar idea in boundary-layer theory. On the 
other hand, the form of (2.11) and (2.12) indicates that the surface shearing stress 
depends chiefly on circumstances close to the boundary (note F” becomes much 
larger in the wall layer than elsewhere, due to the componentf”). 
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An alternative expression for P, follows from (2.17). When evaluated at  7 = 0, 
the first two terms on the right-hand side reduce to -/3c because of the boundary 
conditions; and we get 

(3.10) P, = -/3c+(ikR)-1[P”’(O)+ u’”(o) -kU”(o)+k~{U’(O)+p}]  7 

= (ikR)-lP”’(O), (3.11) 

where (3.11) follows from the exact expression (3.10) because of assumptions (i) 
and (iv). A comparison of (3.11) with (3.9) shows P‘”(0) to be a large quantity, at 
least O(kR);  and clearly it is large due to thef component of F arising in the wall 
layer (in fact P’“(0) can be replaced byf”(0) within the order of approximation 
implied in proceeding from (3.10) to (3.11)). 

Let us consider equation (2.17) a stage further. We know from (2.16), and also 
as a familiar result from boundary-layer theory, that the pressure vanes quite 
gradually with 7; in particular, it does not change significantly over the thin wall 
layer. A good approximation to P, will therefore be given by evaluating (2.17) 
just outside the wall layer, say at 7 = E :  this takes the form 

p, = V(4 $(4 - [W) - CI @(4, (3.12) 

the terms in (kB)-l on the right-hand side of (2.17) being negligible outside the 
wall layer. But we have seen when deriving (3.11) that the terms independent of 
R in (2.16) (i.e. the terms like (3.12)) reduce at 7 = 0 to the small quantity -pc, 
and that a term negligible at 7 = E becomes dominant at 7 = 0. In  other words, 
the two groups of terms rapidly exchange role in keeping P approximately 
constant across the wall layer. This behaviour is perhaps obvious physically; but 
it is interesting to see mathematically how, when proper account is taken of 
viscosity, the pressure variation-an effect generated essentially by inviscid 
behaviour in the main flow-is transmitted to the boundary through the ‘region 
of influence’ of the non-slipping boundary condition, which would have to be 
ignored on the basis of at best some tentative physical argument if viscosity were 
neglected entirely. (Note, by the way, that (3.12) is exactly equivalent to (3.9) 
with the lower limit of integration replaced by 6: this relationship is proved 
by an integration of (3.3).) 

Of the three approximate expressions which have been given for P,, the first 
(3.9) would seem likely to be most generally useful, being of a form comparatively 
insensitive to errors in I$. Its intuitive appeal has already been remarked; and it 
indicates clearly the important fact, to be discussed fully later, that conditions at  
the critical point largely determine the p h e  of P,. This was first demonstrated 
by Miles (1957), whose work will be recalled in some detail just below. As was 
mentioned in the discussion following equation (3.3), the inviscid solution under- 
goes a phase change across the critical point. The magnitude and sign of this 
change depend on the values of U’ and U” at 7 = ye (Tollmien 1929); and hence 
these values obviously must affect the phase of P, as calculated from (3.9). 

The imaginary part of P, has an important physical significance, as it can be 
shown that in the absence of viscosity the rate of energy transfer from the fluid to 
unit area of the wave surface is ka2c9{P,). An estimation of this quantity is the 
vital step in ‘sheltering’ theories of wave generation by wind, in which the 
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growth of water waves is supposed to occur when the energy supply exceeds the 
rate of dissipation by viscosity in the water (see Ursell(l956) for a review of this 
subject). Miles (1957) has published an interesting calculation of 3{PS} for velocity 
profles characteristic of turbulent boundary layers, the calculation being based 
essentially on the evaluation of an expression similar to  (3.12). His theory was 
developed in Cartesian co-ordinates; but the restriction implied by the presence 
of large velocity gradients-as explained in Q 2-was recognized, and a way of 
avoiding it was suggested (p. 191 of his paper). The most important difference 
between the present model and that considered by Miles is the neglect of viscosity 
in his, so that the boundary condition on the inviscid solution q5 needs to be 
a purely kinematic one applied at some distance from the wave surface-in 
contrast to the exact condition (3.7) which clearly depends on viscosity. In  our 
n6tation the boundary condition assumed by Miles is equivalent to $ = - U -t c 
at a surface approximately parallel to  S but a little way from it, say 7 = E .  This 
implies that 7 = E is a streamline, which is not an obviously justifiable assumption 
a priori, particularly in view of the large velocity gradient near 8. However, 
there is little cause to doubt the validity of Miles’s theory in the particular ex- 
amples treated by him. It will appear in $ 4 that the inviscid boundary condition 
can be established rigorously as an approximation to the exact condition in some 
cases. 

(It may be noted, incidentally, that if the behaviour of $(7) implied by the 
assumption of an inviscid boundary condition (i.e. q5 = c - U for 7 small) were to 
persist right to 7 = 0, the full viscous condition (3.7) would be satisfied-at least 
when /3 is neglected in comparison with U’(0) .  At first sight this fact might seem 
to justify the inviscid condition as an approximation to the full viscous condition; 
but in fact this does not follow. Since $ = c- U is not an exact solution of (3.3), 
there is no assurance that this approximation satisfies (3.7) adequately because of 
the large parameterf’(O)/f(O) in (3.7) which multiplies the error in 4.) 

An important result due to Miles (1957) deserves to be recalled here. The 
opportunity will be taken to outline a derivation rather different from his. If the 
inviscid boundary condition noted above is accepted, equation (3.12) leads 

w3 = [c - U(@I -W1(4j. (3.13) 
immediately to 

Now a property deducible from (3.3) (see Lin 1955, $8.2) is that, for c real as at 
present, the quantity 

where $* denotes the complex conjugate of $, is constant everywhere except at 
the critical point ( U  = c) where it has a discontinuity. The exact form of the 
discontinuity can only be decided by a study of the complete Orr-Sommerfeld 
equation, which shows it to be 

WI = w 7 3 -  W(7,) = w-G/u;) lq5c12, (3.14) 

where the subscript c refers to values at the critical point. But W = 0 for 7 > qc 
since 4 -+ 0 for large 7; therefore W ( E )  = - [W] if r,ze > E .  Also, owing to the 
boundary condition $ ( E )  = c- U(s )  (i.e. q5 = #* at 7 = E ) ,  we have 

W E )  = 4i[c - U(4I [q5*’(4 - $’(4l = [c - W l  J v ’ ( 4  j, (3.15) 

w = +i($q5*’- $ * $ I ) ,  
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which is the same as the right-hand side of (3.13). Hence 

(3.16) 

This is the result found in a somewhat different way by Miles. It shows the 
energy supply from the fluid to be proportional to the curvature of the velocity 
profile at the elevation where U = c, the supply being positive (i.e. such as to 
promote the growth of waves) when the curvature is negative. However, it is 
clear that 9{P8) will not be given as simply as this when the exact boundary 
condition (3.7) has to be applied. 

4. The wall friction-layer 
We now consider the functionf(q), which can be regarded as an adjustment to 

the inviscid solution required near the boundary in order to satisfy the viscous 
boundary conditions. This idea is familiar from stability theory; but perhaps the 
clearest account of what it implies physically is that given by Lighthill (1953), 
who introduced it in another context. The wall friction-layer (i.e. the region 
where f (7) is appreciable) should not, of course, be confused with the boundary 
layer by which the velocity profile U may be characterized: the wall layer is likely 
to be only a very small fraction of the whole boundary layer (see Lighthill 1953, 
p. 480). 

If it is assumed that the effective thickness of the wall layer is very small 
compared with the wavelength 2n/lc, the equation (3.2) satisfied by f (7) may 
be simplified by neglecting the terms in k2. If it is further assumed that f varies 
much more rapidly than U ,  then the term U” f can be neglected in comparison 
with ( U - c ) f ” .  Also, y U ’ ( 0 )  can be taken as an approximation to U(7)  over 
the wall layer. (The fact that U”(0) = 0 if the primary flow has no pressure 
gradient provides further justification for these approximations; but clearly this 
is not essential.) Thus, the equation forf becomes 

f’” = ilcA{7U’(O) - c } f ” .  (4.1) 

The various approximations which have been introduced can best be justified 
a posteriori by considering the properties of the solution of (4.1) (see $8). The 
assumption which probably has greatest need of being tested in particular appli- 
cations is the linear approximation for U over the wall layer. It wi l l  be shown in 
9 8 that this assumption is well justified in the case of laminar boundary-layer 
profiles. It is less secure, however, for turbulent boundary layers; because, 
although the wall layer is much thinner than in corresponding laminar cases, 
U varies very much more rapidly near the boundary. In  effect, applications to 
turbulent boundary-layer profiles require that the wall layer should lie within the 
viscous sublayer, over which U is well known to vary linearly. 

The ‘inviscid ’ solution a + 67 of (4.1) is irrelevant here, being in fact equivalent 
to a linear approximation for $(7) near 7 = 0. The solution of (4.1) which ap- 
proaches zero rapidly for large 7 is expressible in the form 

f (q> = A 1 exp [ i t 3  + im{q - c/ ~’(0)) t] t-zdt, (4.2) 
C 

12 Fluid Mech. 6 
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in which m = [kRU'(O)]S, A is an arbitrary constant, and the path of integration 
in the complex t-plane is terminated at - to and 00 egni. The form of C in fmite 
parts of the plane is immaterial except that C must pass above the origin; but it is 
most convenient to trace C along the two radii C, and C, indicated in figure 2, the 
singularity at t = 0 being skirted by a small arc as shown in the figure. In  dis- 
cussing this integral, the notation z = m{y -c/U'(O)} will be useful. 

I 

FIGURE 2. The path of integration in the complex t-plane. 

Numerical values of this function have been calculated by several authors 
interested in stability theory, the usual course being to consider - 2  as the 
independent variable. (This is the function usually denoted by (pa in papers on 
stability.) The values given by Holstein (1950) appear to be the most accurate, 
and a useful graph of the function appears as figure 4 in his paper (the abscissa 
there is equivalent to our -2). This figure shows both the real and imaginary 
parts off to oscillate for increasing values of the argument 2, but to decrease a t  an 
enormous rate over all ranges of z ;  for instance, their magnitudes decrease by 
factors which are O(lO-s) as z goes from 0 to about 4. Thus, we may consider the 
length m-l as a measure of the effective thickness of the wall layer; and the 
assumption that this thickness is small compared with wavelength can therefore 
be expressed m B k (i.e. assumption (ii) of (2.18)). It may be noted also that this 
solution is expressible in terms of Bessel functions (e.g. see Lin 1955, Q 3.6; or 
Schlichting 1955, p. 327). 

Let us consider how the quantity z will vary over the wall layer in some 
particular physical examples. First, for a rigid solid boundary we have c = 0; and 
so z = my is zero at the boundary and becomes positive away from it. The value 
off(?) will become negligibly small compared with its value on the boundary as 
my increases beyond, say, 1 or 2. Values off(O), f '(0) andf"(0) as required in the 
present analysis can be obtained very easily from (4.2) in this case. 

Now suppose that c has a positive value small enough for the critical point 
y = yc to lie within the region next to the boundary over which the linear approxi- 
mation U = yU'(O)applies.Theny, = c/U'(O),andsoz = -my,attheboundary. 
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In  fact, z increases from this negative value to zero at the critical point, and 
becomes positive for y > 7,. The viscous solution f (y) diminishes rapidly as before, 
and will reach a quite insignificant magnitude at z = 0 if the ratio mc/U'(O) 
( = my,) is much larger than unity: i.e. the critical point lies well outside the wall 
layer. On the other hand, the critical point will occur in the wall layer if this 
ratio is of the order of unity. Now, even if the critical point lies outside the 
region where U = yU'(O), the approximation forf(7) is still valid provided that 
mc/U'(O) is large; for, though = c/U'(O) is no longer the critical point, the wall 
layer is covered effectively while z still has large negative values, i.e. f(y) has 
practically vanished well before z increases to zero. We remark that in this 
respect our use of the functionf(7) differs from the usual course in stability 
theory: there it is generally assumed that a linear approximation holds between 
the critical point and the (plane) wall, and in fact U'(7,) rather than U'(0) is 
commonly written in the definitions of parameters corresponding to our m (cf. 
Lin 1955, p. 40). 

A possible limitation of the present analysis must now be mentioned. The 
difficulty might be expected to arise in applications to turbulent boundary-layer 
profiles which have exceedingly high values of U'(0). It appears feasible that the 
parameter mc/U'(O) = (kR)B c [U' (O) ]4  could be quite small even when the critical 
point occurred well away from the boundary. According to the line of argument 
considered above, the approximation (4.2) would not apply in this case. To meet 
an objection of this sort, it is necessary to examine the relation between U'(0) and 
R for actual boundary layers. This step is deferred until Q 8; and we meanwhile 
introduce the special assumption-to be justified there-that the parameter in 
question is reasonably large for all applications where the critical point is outside 
the region where U = U'(O)7, e.g. outside the viscous sublayer of a turbulent 
boundary layer. This assumption is listed as item (iv) in (2.18). 

The quantity f '(O)/f(O) appearing in (3.7) has special interest at present since 
it determines how, through the boundary conditions, viscosity affects the 
' inviscid ' solution #(7) representing the disturbance in the main body of the fluid. 
In  the literature on stability theory, this quantity is commonly expressed in 
terms of a certain function often named after Tietjens, who first introduced it: 

f 'o  m 
f(0) = -D(  -mc/U'(O))' 

thus, in our notation 
(4.3) 

where D( ) is the Tietjens function according to the usual definition. (Apparently 
many writers on stability have kept the notation D originally used by Tietjens, 
althoughBisusedforD+zobyLin (1945,PartI; 1955,s 3.6).) Atleast sixauthors 
have given numerical tables of the real part 0, and imaginary part D, of this 
function. The values given by Holstein (1950) cover the widest range of the 
argument; and a useful feature of his table is that the values calculated by five 
previous authors are included. 

Graphs of D,( - zo) and Di( - zo) are shown in figure 3. It is seen that for zo 
greater than about 8 both functions cease to oscillate and rapidly approach the 
asymptote 1/,/(22,) (see equation (4.13) below). The range of positive zo for which 
D, is negative has special interest in a later part of our discussion. This is 

12-2 
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0 < zo < 2.3, the upper limit having been estimated from values of Di tabulated 
by Holstein (1950) and Lin (1945). (Holstein includes values for xo = 1-5,2.0,2.6; 
and Lin gives values (actually of his F = D/x,) at intervals of 0.2 for z,. The latter 
are consistent with Holstein's, except that Lin's values for zo = 2.4 and 2.6 seem 
to be incorrect.) 

Figure 3 indicates that, for a given m, f '(O)/f (0) becomes progressively larger as 
c gets fairly large. And so, recalling the remarks made below (3.7), we see that the 
exact boundary condition on # tends to assume the simple form # ( O )  = c which 
might be proposed as the (kinematical) boundary condition if viscosity were 

- 0 4  v 
FIGURE 3. Graphs of the real and imaginary parts of the Tietjens function D( -zo) .  

The dashed lime is part of the curve (2zo)-f, which is the asymptote of D, and Bi. 

neglected from the start.' The fact that for large wave velocities the effects of 
friction at the wave surface cease to be sigrdcant is, of course, to be expected on 
physical grounds (cf. Miles 1957, bottom of p. 187). However, it should be noted 
that as a criterion for neglecting viscosity a Reynolds number based on wave 
velocity and wavelength is not really adequate: the parameter mc/ U'(0) seems to 
provide a more reliable test, particularly in view of the fact that U'(0) increases 
with Reynolds number in any self-consistent model for the flow. 

We shall next consider the specific form taken by the boundary condition (3.7) 
in some special cases. To evaluate f ' ( O ) / f ( O )  explicitly, we might justifiably resort 
to  existing tabulations of the Tietjens function; but it seems worth while to 
proceed directly from (4.2) for a few illustrations. 

The case c = 0 

Here the critical point coincides with the boundary. It will be assumed that 
there is no pressure gradient in the primary flow, so that U"(0) = 0: hence, as (3.3) 
now does not have a singular point at U = c, # and 4' remain valid approxima- 
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tions over the whole flow. We also take /3 = 0 as the boundary is implied to be 
solid in this case. To fbdf(0) explicitly from (4.21, the component integrals along 
the two radii shown in figure 2 are reduced to the same real integral by the 
substitutions t = -s along C, and t = esnis along C2. Thus we get 

in which s+ + 0. An integration by parts now leads easily to 

f(o) = -~3Qr(;) e-B.i. (4.4) 

The integral expression for f’(0) obtained from (4.2) has a rather different 
character, as the contributions from C, and C, cancel, leaving as sole contribution 
the residue from the 120’ circuit of the simple pole of the integrand at  t = 0. It is 
found without difficulty that 

f’(0) = A@rm, (4.5) 

and hence f’(O)/f(O) = - 1-288 eQnim. (4.6) 

The fractional error in this result (due to our neglecting terms in k2 when deriving 
(4.1)) can be shown to be O(k/m)2, which is very small according to assumption (ii) 
of (2.18). 

Incidentally, a result which will be needed later can be found in the same way 
from (4.2): this is 

f”(O)/f(O) = 1-372e4nim2. (4.7) 

The substitution of (4.6) into (3.7) now shows that the boundary condition to 
be satisfied by the inviscid condition is 

#’(O) + 1-288e*rim#(0) = - U’(0). (4.8) 

This covers both the kinematical and viscous conditions at the wave surface, and 
appears at &st sight quite unlike any boundary condition that might be applied 
if viscosity were to be neglected from the start. The implications of this boundary 
condition will be examined later when #(7) has been established explicitly; but 
this is a suitable place to note an interesting interpretation given by Lighthill 
(1953), who investigated the wall friction-layer in the course of his work on the 
upstream influence of boundary layers in supersonic flow. 

To bring (4.8) into line with Lighthill’s argument, the equation is multiplied by 
(1.288 e i n i  m)-l, which may be denoted by 0-776L, say, where L has the same 
meaning as in Lighthill’s notation. Thus, (4.8) becomes 

# ( O )  + 0*776L+’(O) = - Om6LU’(O). (4.9) 

Now L is a complex parameter whose magnitude is a length comparable with the 
thickness of the wall layer; and over such a length from the wall the linear 
approximation #(7) = # ( O )  + q # ’ ( O )  is certainly adequate. Hence, (4.9) has the 
interpretation that #(7) = - U(7)  approximately for = 0*776L, which could be 
taken to mean that the flow satisfies a kinematical condition on a certain surface 
7 = 0.7761; a small distance from the boundary 7 = 0. In  other words, the effect 
of the wall layer appears to be as if the surface 7 = 0.776L were replaced by 
a solid wall, outside which viscosity had no effect. 
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It must be emphasized, however, that the equation 7 = 0.7761; does not repre- 
sent any surface in the physical plane. For, like the other complex parameters in 
this analysis, L is merely an operator carrying phase as well as magnitude signifi- 
cance, and obviously has no physical meaning divorced from the connotation of 
operating on periodic functions of 6. This hypothetical wall has therefore to 
remain an abstract concept. 

The case mc/U'(O) = O( 1 )  or less 

The critical point now occurs away from the boundary yet still within the 
friction layer. This case is exemplified by waves upon a film of highly viscous 
liquid dragged along a plane wall by an air stream: the wave speed would be of the 
order of the mean velocity of the film, which would be only a very small fraction of 
the velocity in the main air stream. However, this case may still apply when c is 
a significant fraction of the free-stream velocity, if the initial velocity gradient is 
large as in turbulent flows with a boundary layer. 

It would be appropriate here to use the expression (4 .3)  in terms of the Tietjens 
function. But, to bring out the effects of small yet k i t e  values of mc/U'(O), 
a useful alternative might be to approximate the integrals forf(O), . . .,f"(O) by the 
leading terms of Taylor series in powers of this parameter. Accordingly, (4 .2)  gives 

where 

f"(0) = A[I,-{imc/U'(O)}I,+,+ 3{imc/U'(0)}21n+z+ ...I, (4.10) 

IN = e*latN-2dt with N = 0 , 1 , 2 ,  .... J, 
This scheme of approximation leads to 

f'(O)/f(O) = - 1*288e4"*m[l -0*223e*n*(mc/U'(0)}+ ...I. (4.11) 

Obviously, the results for c = 0 apply approximately to this also if mc/U'(O) is 
small enough. 

The case mc/U'(O) 1 

The critical point ITOW occurs well outside the wall layer. We first remark that, 
as f'(O)/f(O) gets very large in this case, the term U'(0) in the boundary condi- 
tion (3.7) takes on secondary importance. Hence, according to assumption (iii) of 
(2.18),  the term ~3 may be neglected entirely. This boundary condition may 
therefore be rewritten 

$NO)  - c = {f(O)/f'(O)} {$ ' (O)  + U'(0)). (4 .12)  

Near the boundary the exponent x in (4 .2)  is large negatively; and so it is 
suitable to use an asymptotic approximation to the integral-and to similar 
integrals forf' andf". These may be obtained by the method of steepest descents. 
I n  this way we obtain (cf. Lin 1945, p. 136; 1955, 3 8.5) 

and 

f'(O)/f(O) - - e a n i  (kBc)*, 

f " ( O ) i f ( O )  N -ikBc. 

(4.13) 

(4.14) 

These two formulae are reliable for mc/U'(O) greater than about 8. We note that 
(4.13) is equivalent to D( -zo) - eaniz;a. 



Xhearing flow over a wavy boundary 183 

5. The solution for a linear velocity profile? 
This model for the primary flow is exceptional in that the equation for F(7) is 

exactly the Orr-Sommerfeld equation, which moreover can be solved completely 
in this case: consequently, it is worth brief consideration as an example on which 
to test some of the foregoing theory. The model obviously suffers from lack of 
realism, its practical applications being essentially restricted to cases where the 
disturbance of the flow is confined to a region over which a linear approximation 
can be made to the actual velocity protlle. Since the disturbance penetrates to 
distances of the order of a wavelength from the boundary, the model would 
generally be reliable only for very short waves. 

When U ( 7 )  = Bq, where B is a constant (see figure 4(a) ) ,  the exact equation 
(3.1) for P(7) becomes 

im3(7 - c / B )  (P” - k2P) = Piv - 2k2P” + k4F, (5.1) 

with m3 = ICRB. The complete solution of (5.1) which tends to zero for large 7 is 
P = ++f, where 

+ = Ae-kl, (5.2) 

and (5.3) 

in which a = k/m, and the path of integration is the same as in (4.2). Again C 
must pass over the origin and be terminated at - co and 00 esff*, but is otherwise 
arbitrary. Although it appears that the integral (5.3) takes different values 
accordingly as C passes above or below the singularity at  t = ia, this choice of 
path is in fact immaterial, since the residue from t = ia simply reproduces the 
solution (5 .2) .  The mathematical steps leading to (5.3) are not difficult, and an 
account of them may reasonably be omitted: it is easily verified by differentiation 
that (5.3) is a solution of (5.1). The present 4 andf have precisely the meanings 
associated with these symbols in 0 3, but are exceptional in that both are exact 
solutions. 

It is not possible to express the required quantitiesf(O), f ’ ( O ) ,  etc., exactly in 
forms any simpler than the integrals given directly by (5.3). To obtain compact 
results, therefore, approximate expressions will have to be introduced. This step 
nullifies to an extent the advantage of having exact solutions, which is the 
outstanding merit of the present model; but there remains the advantage that the 
scheme of approximation can be extended without difficulty to successively 
higher degrees of accuracy. 

As a may be assumed to be small, which corresponds to assumption (ii) of 
(2.18), f may suitably be approximated in terms of ascending powers of a. The 
factor exp (a2t) in the integrand of (5.3) can be expanded as a power series and 

t I have recently learnt that this example was also treated by Dr M. S. Longuet- 
Higgins in unpublished work done in 1962 while he was at  the Scripps Institute of 
Oceanography, La Jolla. By meam of a theory developed in Cartesian co-ordinates, he 
calculated the pressure distribution over a solid corrugated surface bounding a uniform 
shearing flow. His results agree with the present ones for a solid boundary. 
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integrated term by term, since this expansion is convergent for all t and the series 
of integrals is also convergent. Now, the binomial expansion 

is convergent for It1 > a, and so this expansion can clearly,be used in the integrand 
and integrated term by term if the path C passes outside the circle of non- 
convergence It1 = a. But the integrand of each integral in this expansion has no 
h i t e  singularity other than a t  t = 0, so that by Cauchy's theorem each integral 
along C outside It1 = cc is the same as that along the path used in $ 4, i.e. along the 
two radii and small arc shown in figure 2. Thus (5.3) can be evaluated by expanding 
the integrand as suggested and irltegrated term by term along the path in figure 2. 
For example, we would obtain in this way, with c = 0, 

f(0) = B{Io + a2(Il -I-,) + a4(12 +I-,) + . . .}, 
where IN is the function of N ( = 0, & 1, 2, . ..) defined below (4.10). Hence, the 
problem can in principle be completed to any order of approximation in terms of a. 
However, it seems enough for present purposes to take only the leading term in 
the expansion of (5.3), which is the function defined by (4.2). That is, we neglect 
O(a2).  Terms which are O(a) will arise throughthe boundary conditions; and these 
seem sufficient to illustrate the effect of the parameter a. 

Owing to the fact that the critical point qc = c/G is not a singular point in this 
example, the various cases considered separately in $ 4  can conveniently be 
covered a t  once by taking the form (4.12) of the boundary condition and allowing 
c to have any value including zero. If f ' ( O ) l f ( O )  is expressed in terms of the 
Tietjens function according to (4.3), and (5.2) is used for +(O) and +'(O), this 
boundary condition gives 

A - c  = -m-lD(-zO){-kA+G} 

with zo = mc/G, and hence 

A = - Gm-l{D( - 20) - 20) (1 + aD( - ~ o ) >  (5.4) 

to the first order in a. 
We now find the normal stress IT, on the boundary, which (2.13) shows to be the 

same as the pressure p ,  = 9{PseikE) to the present order of approximation. 
Equation (3.9) gives with the same accuracy simply P, = (G - kc) A ;  and so, 
using (5.4), we have 

P, = - kbR-#G*( 1 - az0)  {D( - z0) - z0} (1 - aD( - ~ o ) } .  (5 .5 )  

This relation shows both the real and imaginary parts of P, to vary in a very 
complicated way with the parameter zo. Consider &st the real part (P8)?, which 
measures the amplitude of the pressure component in phase with the wave 
elevation. If we ignore the quantity aD( - zo), which is always small since D( - zo) 
is never large, (5 .5)  shows (P,)? to be negative-as it is for a potential flow over 
waves with U constant-when (1 - azo) (DT - zo} > 0. This condition is satisfied 
only with zo < 0.9 and zo > a-1: that is, with c < 0*9G/m and c > G/k.  The 
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imaginary part (PS)$ is positive, which implies a positive ‘sheltering coefficient ’- 
whose sigdcance is to be explained later, when ( 1  - azo)Di < 0. This occurs 
with zo < 2.3 and zo > a-l .  The occurrence of positive values of (P,)$ for a range of 
small values of c and then only for fairly large values will also be observed in 8 7 ,  
where velocity profiles more realistic than the present one will be treated. This will 
be pointed out to have considerable physical interest. 

An explicit expression for ps  will now be written down with c = 0, this case 
being sufficient for purpose of illustration. According to (4 .6) ,  we have 
D(0) = 0-776 dni. Hence, (5.5) leads immediately to t  

ps = - 0.776ak-&R-*G~{cos (kE- &r) + 0.77601 cos (kE-+r)}. (5.6) 

The shearing stress 7s on the wave surface can also be calculated easily for this 
case. Equation (2.12) gives 

% = R-l{f”(O) + k2A} 

= R-’A{ -f”(O)/f(O) + k2}. (5.7) 

Using (5.4) together with the expression (4 .7)  forf”(O)/f(O), and neglecting terms 
which are O(a2), we obtain directly 

T8 = 1.065 e*ni R-lmG( 1 + 0.776 e-ini a). 

7s = 1 .065aR- fk~G~{cos  (ICE+ Qn) + 0 . 7 7 6 ~ ~  cos ICE}. 

(5.8) 

The stress 7s is the real part of E a e i K :  thus, when we put m = (IcRG)*, (5.8) 
shows that 

(5 .9)  

Note that the amplitude of the .first cosine term may be written 1-0657,ma, 
where 70 = G/R is the uniform shearing stress exerted by the primary flow. 

I n  these formulae x may be written instead of if preferred. For comparison 
with them it is appropriate to recall from (2.1) that the wave surface is expressed 
in terms of (x, y) by the equation y = a cos kx. Note that both 7s and rs vanish 
for R + co. 

An interesting feature of (5 .6)  and (5.9) is the phase relation between the 
stresses and the wave on the boundary. It is seen that at high Reynolds numbers 
(a --f 0) the shearing stress is approximately Qn in advance of the wave: that is, 
the maxima occur at points one-twelfth of a wavelength in the rear of the wave 
crests (x being regarded as the forward direction on the waves). The phase of the 
normal stress is in in advance: that is, the maxima occur one-twelfth of a wave- 
length forward from the troughs. These results, particularly that for the phase of 
7,, can be interpreted to indicate a kind of ‘sheltering ’ on the leeward slopes of the 
waves; but this will be made much clearer by an example which is to be con- 
sidered as part of $8. At least it can be said that, despite the rather artificial 
character of this linear-profile model, these phase relationships seem perfectly in 
keeping with intuition about the general nature of wind forces on waves (we recall 
the useful remarks by Lamb (1932, p. 630) concerning what is to be expected in 
this matter). 

previous footnote. 
t This formula was also obtained by Dr Longuet-Higgine in his work cited in the 
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rl 

6. A simple profile approximating a laminar boundary layer 

a region 0 < r] < 6 (region (i)) in which U is given by 
As a further simple example, we consider a velocity profile characterized by 

u = urn sin Kq (K  = 7r/26), (6.1) 

and beyond which (in region (ii)) U remains constant at  the value Urn (see 
figure 4 ( b ) ) .  This profile is a fairly close approximation to the laminar boundary 
layer along a plane, if we take 6 = 4.8XRZ4, X being the distance from the start 
of the boundary layer and R, the Reynolds number based on this distance (cf. 

.) 

Lamb 1932, p. 686). With this value of 6, the important parameter U’(0)  = KU, 
is the same as for the exact boundary-layer profile (see, for instance, Schlichting 
1955, chapter VII); and it is clear that the small differences between the present 
profile and the exact one would scarcely affect our analysis. This profile is 
specially worth considering for the case c = 0, since the differential equation (3.3) 
for q5 can be solved exactly. 

When (5.1) is substituted, equation (3.3) becomes, with c = 0, 

q5” + (K2- k2) q5 = 0, 

q5 = U,(A sin Zq + B cos Zq), 

(6.2) 

(6.3) 

whose general solution may be expressed 

where 1 = , /(Ka-k2). It also appears from (3.3) that the form of the inviscid 
solution in region (ii) is simply q5 = const. x e-kv. Therefore, to make q5 and q5‘ 
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continuous at 7 = 8, the solution (6.3) must satisfy the condition +'(a) = - k+(8). 
Hence, putting 8 = IS = &r.J{l- (IG/K)~}, we get 

A COB 6 - B S ~  8 k 
AsinO+Bcos8 = -i' 

which gives on rearrangement 
A 1 - (k/l) cot 8 
B = cot o+ ( k / l )  - 

For usein the boundary condition (4.8), we have # ( O )  = SU,, #'(O) = IAU, and 
U'(0) = KU,. Thus, if (6.5) is used to eliminate A ,  (3.7) leads to 

This relation determines B, and hence A is known through (6.5). 
To fmd the pressure at  the boundary, we may use the formula (3.12), putting 

e = 0 as we can do if the minute pressure variation across the wall layer is to be 
neglected. This gives 

P, = U'(O)+(O) = KBU2, = + 1.288 e*ni?)-'. I (6.7) 

Following from (2.12), an approximation to the shearing stress on the boundary 

(6.8) !zl$ = R-lf"(0) = -R-~(f''(0)/f(0))#(0>. ia provided by 

Hence, using (4.7) and (6.6), and noting that in the present example 

we find that m = [kKRU,]), 

m -l 
I 

+ 1.288 eBni -) 
These expressions for the stresses are too complicated for easy interpretation; 

but considerable simplification is possible if the boundary-layer thickness 6 is 
taken to be small compared with the wavelength, so that k8 and hence k/K are 
small-though still k8 9 R-l. We need to assume that the wall friction layer still 
occLpies only a small part of the boundary layer; and we also assume that 
A = km/K2 is small. The checking of these two assumptions will be left until the 
next section, where a general type of long-wavelength approximation is to be 
developed. If terms which are O(k8)2 are neglected, we have 1 = K, cot 8 + 0; and 
(6.7) and (6.9) give approximately 

P, = - kU:( 1 - 1.288 einiA), 

T, = 1-372 eini U: k2/m. 
(6.10) 

(6.11) 

The error in (6.10) is O(A2) and that in (6.11) is O(A), the latter estimate being 
quite adequate since T, < P,. 

These results provide the following explicit expressions for the stresses on the 
wavy boundary y = a COB kx: 

p,/ U$ = - ~ ~ { C O S  k& - 1.288A cos (hc +in)} 
= -ka{[l- 1~115A]cosk&+0~644Asink~}; (6.12) 

r,/U2, = 1-372kaacos(k~+&i-i), (6.13) 
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where a = k/m as in Q 5, this quantity being small by assumption (ii) of (2.18). 
Note that a, = p ,  to the present order of approximation. 

I n  common with the results found for the previous example, both stresses have 
distributions suggestive of a ‘sheltering ’ action: that is, their minima occur on the 
leeward slopes of the waves. The pressure sheltering coefficient according to the 
usual definition (Jeffreys 1924, 1925; Ursell 1956) is in fact s = 0-644A. 

7. Boundary-layer profiles in general 
We shall now investigate some approximate methods applicable generally to 

velocity profiles of boundary-layer type. We particularly wish, with turbulent 
boundary layers in mind, to be able to deal with comparatively diffuse profiles of 
the general form indicated in figure 4 (c) .  Further, it is now time to complete some 
calculations for the surface stresses in the interesting case where c > 0 so that 
there is a critical point away from the boundary in a region where the profile is 
curved. To account for the viscous solutionf(q), the method applied previously is 
still useful; but it remains to find a suitable approximation to the solution q5(q) of 
the ‘inviscid’ equation (3.3). This equation cannot be solved exactly in terms of 
known functions except in the two simple cases considered previously-and 
perhaps in one or two other cases of no interest here. If a high degree of accuracy 
were required, resort would have to be made to numerical solutions computed for 
particular profiles-as has been done in various studies of hydrodynamic stability 
(see, for instance, Lin (1945, Part 3) for calculations relating to parabolic and 
Blasius profiles). It is more instructive, however, to use the approximate expres- 
sion derived as follows, which is unrestricted to any particular form of U.  
Although this is essentially a small4 approximation, thus applying most 
accurately to thin boundary layers, it probably gives a reasonably good account 
of the properties of q5 even for fairly diffuse profiles. 

We &st observe that over a range excluding any critical point an approxima- 
tion to the solution of (3.3) for small k is 

q5 = A(U-c)e-“r, (7.1) 

which evidently satisfies (3.3) accurately wherever U”/k2( U - c )  is either very 
small or very large compared with unity. (It appears, rather remarkably, that 
this approximation was first noted both by Lighthill (1957, Q 6) and by Miles 
(1957, fj 5) in papers dealing with entirely different topics but appearing at the 
same time in the same journal.) Let us for a moment consider the exceptional 
case where c < 0: that is, the wave travels in the direction opposite to the flow. 
There is now no critical point, and (7.1) is a uniformly valid approximation over 
the whole of a flow of boundary-layer type. In  the region far from the boundary 
where U tends to a constant value, q5 tends to const. x e-k7 as it should do; whereas 
in the region near the boundary over which U varies rapidly, q5 = const. x (U - c) 
which satisfies (3.3) approximately for small k. Further, if the arbitrary con- 
stant A is put equal to - 1, the boundary condition (3.7) is satisfied very nearly 
provided only that the usual conditions U’(0) kc and U’(O)%,P hold; and also 
(3.5) gives f = 0. Hence, (2.4) and (2.5) reduce to @(E,q) = $Jq) and v = 0, 
u = U(q)  - c.  The [-lines are thus streamlines according to this approximation. 
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The latter result incidentally has considerable interest as evidence supporting 
the method of linearization set out in $2.  For it shows that, at least in the 
absence of a critical point, a fair approximation to the actual flow pattern is 
already obtained simply by 'bending ' the primary profile to follow the waves by 
use of the system of curvilinear co-ordinates. There can therefore be no further 
doubt about the smallness of the periodic perturbation introduced on the left- 
hand side of (2.4) to represent the difference between the ' bent ' profile and the 
actual flow. 

While serving best for c < 0, this approximation also has a somewhat limited 
usefulness in the case c = 0, provided U"(0) = 0 so that q5 does not exhibit 
singular behaviour at the critical point on the boundary. The wall friction-layer is 
effectively absent in this approximation, and so the surface shearing stress is 
indeterminate. According to (3.9), however, an approximation to the pressure 
at the wave surface is given by 

P, = -k2Jow UZe--kVdy. (7.2) 

Thus the pressure is in exact anti-phase with the wave elevation, no sheltering 
being indicated. 

To deal adequately with the case of a rigid boundary, and to make any progress 
at all with the case where there is a critical point inside the fluid, an improvement 
on (7.1) is obviously needed. A method of developing successive uniformly valid 
approximations to the solution of (3.3) for small k was given by Lighthill (1957, 
$ 6). He applied the method under the restriction that U - c (equivalent to his V )  
does not vanish anywhere; but it still formally yields results in the absence of this 
restriction; and certain questions of indeterminacy which then arise can be 
answered by other considerations (see below). A second approximation to the 
solution of (3.3) is found by Lighthill's method to be 

where Urn is the constant value approached by U as y + 00. The error in this is 
proportional to k2. Details of the derivation may be omitted, as it is easily verified 
that (7.3) satisfies (3.3) to the order of approximation in question. 

This approximate expression for # seems quite adequate for our present pur- 
pose. Although the integral in (7.3) is indeterminate for 7 < r~~ (i.e. U < c), we 
shall see that a simple adjustment indicated by the theory of the full Orr-Som- 
merfeld equation is sufficient to remove the ambiguity, and so make (7.3) give 
a correct account of q5 either side of the critical point. It can be shown that the 
extra terms present in higher approximations (the next one was given by Light- 
hill) do not affect the behaviour at the critical point in any vital way. 

It is noteworthy that (7.3) reduces as follows in the case of very thin boundary 
layers: i.e. where the boundary-layer thickness Sis very small compared with k-1 

and we have U = Urn for y 2 6. If terms which are O(k6)2 are neglected, (7.3) gives, 
for < 6, 
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This expression is seen to be the sum of two functions of 7 which each satisfy the 
equation ( U  - c) 4‘‘ - U”4 = 0 (i.e. equation (3.3) with the term in k2 omitted); 
and also (6.4) satisfies the boundary condition which, as demonstrated in 0 6, is to 
be applied at the edge of the boundary layer, i.e. $’(a) = -k$(S) .  It may be 
recognized that the two functions comprise the leading terms in the well-known 
Heisenberg expansion (see Lin 1955, p. 34), which expresses the solution of (3.3) 
in powers of k2 and has had important applications to stability theory. Unlike 
(6.3), an approximation taking a few terms of the Heisenberg expansion is not 
uniformly valid over the whole range 0 < 7 .c 00, and would be unsuitable for the 
application we intend to make to fairly diffuse boundary-layer profiles. 

The cme of a rigid solid boundary 
I n  our fist application of (7.3), let us take c = 0 and assume no primary 
pressure gradient so that U”(0) = 0. For clarity in what follows, it seems worth 
while to rewrite (7.3) with c = 0: 

Theintegralin (6.5) diverges without bound for 7 + 0 (i.e. U + 7U‘(O) + 0) ;  but 
its product with U converges to a finite limit. Thus, we easily find that 

# ( O )  = AkU2,1U’(O). (7.6) 

It is also easy to show that @ ( O )  is expressible in the form 

The integral which x denotes is clearly convergent to a finite limit if U”(0) = 0, as 
is assumed; for then {U’(0) -Ur(7)} - tO(y2)  as q + O ,  and so the integrand 
remains finite’at 7 = 0. If U”(0) were not zero, a logarithmic singularity would 
arise, as one expects since 4 = 0 would in this case be a singular point of the dif- 
ferential equation (3.3). To deal with the case of non-zero pressure gradient, the 
‘modified inviscid ’ solutions studied by Tollmien (1929) would be required: these 
satisfy (3.3) away from the critical point, but in its immediate neighbourhood 
become approximate solutions of the full Orr-Sommerfeld equation. However, 
we shall not attempt to cover this case., 

If the ratio kU,/U’(O) is specified (or M), the quantity in (7.7) depends 
only on the shape of the velocity profile. For example, we find that 
x = -k& = - &rkU,/U’(O) for the sinusoidal profile considered in 0 6. Again, 
for the exact laminar boundary layer along a plane, a numerical integration using 
Howarth’s figures (Schlichting 1955, p. 107) gives x = - l-75kUm/U’(O). To 
estimate x for turbulent boundary-layer profiles is more difficult, since the 
greatest contribution to theintegral (7.8) comes from the regionnear the boundary 
-yet outside the viscous sublayer-where the shape of the profile is least 
accurately known. However, it is still clear that x = O(kd*), say, .where 6* is 
roughly speaking the width of the region over which most of the variation of 
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U occurs. This may be considerably less than O(kS), where S is the 'overall' 
boundary-layer thickness; because, for a turbulent profile, U is not much 
different from U, over most of its width, and so the respective contribution to 
(7.8) is small. It is inappropriate to go into this matter any further; for we shall 
regard x as a small quantity anyway, and presently see that it may be neglected 
entirely in forming results which suffice as a first approximation. 

IfwealsotakeA = kmU~/[U'(0)]2tobesmall, thesubstitutionof (7.6)and(7.7) 
in the boundary condition (4.8) gives approximately 

(7.9) 

Hence, if this is put into (7.5) and the integral in (7.5) is combined with the 
definition (7.8) of x, the result can be written 

A = - 1{ 1 - x - 1.288 einiA). 

(7.10) 

To find the pressure at the boundary, the integral formula (3.9) is clearly the 
most appropriate a t  present, since it is not unduly sensitive to errors in our 
expression for 4. (Note that the alternative formula (3.12) would give a very poor 
approximation here : it was used without disadvantage in the previous example 
($6) only because $ was known exactly there.) In  evaluating (3.9), there is 
justification for omitting some of the terms in (7.10). As the most important 
simplification, the integral in (7.10) can be neglected: since the fixed limit in this 
integral is zero (not co as in (7.5)), its effect tends to be cancelled by the exponen- 
tial factor multiplying it; and its omission is well justified if kS* is fairly small. 
Further, two terms which are O(kUJU'(0)) times the leading terms can be 
neglected, with obvious justification if a turbulent boundary layer is in question, 
and also if k8 is small in the case of a laminar boundary layer. Accordingly, we 
obtain the approximation 

P, = - k2( 1 - 1.288 einiA) U2 e--kq dy. (7.11) 

The shearing stress can be found in exactly the same way as in 5 6. The result to 

T, = 1.372 eini U: ka, (7.12) 

which is the same as (6.11) except that here no specific profile is implied and we 
have a = k/m = k%R-*[U'(O)]-). 

These results probably give reasonable estimates of P, and T, even for profiles 
which are fairly diffuse measured against a wavelength; but clearly they are most 
accurate when kS is small. A survey of the various approximations which have 
been introduced shows (7.11) and (7.12) to become exact as kS -+ 0, provided m8 
still remains small, i.e. provided the assumption that the wall layer takes up only 
a small part of the boundary layer remains valid for thin boundary layers. This 
assumption, together with the one that A is small, will be examined presently. 
Note that when k8 is very small, U = U, over most of the range of integration of 
the integral in (7.11); and so this equation reduces approximately to (6.10). B'or 

6 
a first approximation is 
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very thin boundary layers, therefore, we have that the magnitude and phase of both 
the surface pressure and shearing stress become independent of the profde shape. 

We observe from (7.11) that the amplitudes of the component of ps in phase 
with the wave elevation and of the component in phase with the slope are respec- 
tively given, as fractions of VZ,, by 

&{p,)/U2, = -ka( l -  1.115A) I ,  (7.13) 

aS{P,)/U% = 0.644kaAI = km, (7.14) 

where (7.15) 

In (7.14), s is the sheltering coefficient as usually defhed. The integral I is easily 
computed for particular velocity profiles, its value being insensitive to fine details 
of the profde such as the rather uncertain region near the wall for a turbulent 
boundary layer. 

Consider, for instance, the case where the +-power law of velocity distribution 
is a suitable approximation: here the profde is given by U/U, = (q/6)+ over most 
of the region 0 < 7 < 6, but is rounded off to make the slope continuous at  7 = 6, 
and is joined smoothly to the straight line U = yU’(0) in the viscous sublayer 
next to the boundary (we recall this is not to be confused with our ‘wall layer’, 
which needs to be rather thinner than the sublayer for the present calculations to 
apply-see 0 8). The latter details scarcely affect I ,  to which therefore a good 
approximation is 

I = (k6)b  lok8 & e-z dz + lk8 e-z dz. 

The first integral may be expressed in terms of the incomplete gamma function. 
Successive integration by parts gives the following asymptotic expansion for 
large k6: 

00 

(7.16) 

It may also be of interest to calculate I for the ‘universal’ logarithmic law of 
velocity distribution for turbulent flow over a smooth plane (Schlichting 1955, 
p. 406). This may be expressed 

u/u, = 2.510g(9U,i?7), (7.17) 

where U ,  is Prandtl’s friction velocity defined by UZ, = T~ = R-lU’(0): also 
U i / U L  = cf, the usual ‘local coefficient of skin friction’. Hence, (7.15) gives 

I = 6 . 3 ~ ~  [log (9U,Rq)]2e--kltd(ky). 

This integral is identifiable with one of the Laplace transforms in the tables 
edited by Erddyi (1954, 0 4.6, no. 13). We find that 

6 

I = 6 * 3 ~ ~ { + ~ ~  + [log (yk/9U, i?)I2}, (7.18) 

where y = ec, C + 0.5772 being Euler’s constant. 
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A comparison with Motzfeld’s experiments 
The measurements by Motzfeld (1937) of the pressure distribution over a rigid 
wavy surface placed in a wind tunnel were mentioned in 6 1. For his first model 
the wave amplitude and length were 0.75 and 30 om, so that ka = 27ra/A = 0.157; 
and the observed pressure distribution was very nearly sinusoidal, with its maxi- 
mum slightly in advance of the wave trough, as predicted by the theory. We shall 
now compare his measurements of the in-phase pressure amplitude and sheltering 
coefficient with values given by the preceding formulae. Remembering that 
Motzfeld’s wave-train was only three wavelengths long (a feature criticized 
adversely by Ursell(l956)) and that there was a considerable pressure gradient 
along the tunnel, it will be seen that the agreement is as good as one could reason- 
ably expect. 

Motzfeld estimated values of the skin-friction coefficient cf by fitting the 
universal logarithmic curve to the observed velocity profile in the wind tunnel. 
At the Reynolds number of the tests on his first wave model, he found 
cf = 0.00173. Now it is easily shown that A is equivalent to cT~R:~, where R, is 
the Reynolds number based on Urn and wavelength (i.e. R, = UrnA/v if Urn and 
A express dimensional quantities). If Urn is identified with the maximum air 
velocity (at the middle of the tunnel), we have R, = 330,000, and so obtain 

The presence of the opposite wall of the tunnel evidently had an insignilkant 
effect on conditions at the wave surface. This is shown by Motzfeld’s measure- 
ments of the velocity profile at different positions over a wavelength: it is also 
indicated by the fact that kq = 4.2 at the opposite wall, so that e-kl was quite 
small there. To find I ,  the most satisfactory course is to make a numerical 
integration based on the measured profile. This gives I = 0.71. (We remark that 
k x (halfthetunnel height) israthertoolargefor the formulae (7.16) and(7.18) to be 
reliable; and in fact they considerably overestimate I . )  

Hence, we estimate the right-hand side of (7.13) to be -0.11. The corre- 
sponding experimental result is - 0.10. Our estimate of the sheltering coefficient 
is s = 0.010; whereas the experimental value is 0.034 (note Motzfeld‘s c,, values of 
which are given in his table 1, is equivalent to (ka)2s). The discrepancy between 
these values of s may well be attributable to the experimental difficulties of 
measuring the very small pressure component, in phase with the wave slope: the 
amplitude of this component was only a few percent of the amplitude of the total 
distribution. 

A = 0.0021. 

Concluding remarks on the analysis for a rigid boundary 
It remains to check the general assumption of small A and also the assumption 
that mi3 remains small for limitingly thin boundary layers. We shall incidentally 
consider how our formulae for the surface stresses reduce when the Reynolds 
number is made infinite. 

It is suitable just here to relax the scheme of using dimensionless variables and 
assign dimensions appropriately to all symbols. The only change of notation 
required by this is to replace R by Y-1 everywhere: thus, for instance, we now 

13 Fluid Mech 
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have m = [kU'(O)/v]), which has the dimension of (length)-l. The parameters A 
and m8 to be considered are, of course, still dimensionless. 

Consider first a laminar boundary layer, formed in the absence of pressure 
gradient, at a distance X from its starting point. To comply with the basic 
assumption that variations in the primary profile are negligible over a wave- 
length, X must be fairly large in comparison with the wavelength A: that is, kX 
must be large compared with unity. This requirement tends to conflict with one 
that k8 should be small; but evidently both can be satisfied if the Reynolds 
number R, d e h e d  below is sufficiently large. The familiar Blasius formula gives 
U'(0) = 0.332v-*X-*Ut; and a fair estimate of the boundary-layer thickness is 
8 = 6v*X*U;*. Hence, there easily follows 

m8 = 4.2(kX)+, (7.19) 

and A = kmU",[U'(0)l2 = 6.3(kX)+R$, (7.20) 

where R, = U,X/v. It is also found that 

cc = 0*23OA/(kX)*. (7.21) 

1 as required; and (7.20) shows that, with 
X fixed, A becomes small when R, is made sufficiently large (e.g. by increasing 
the velocity U, in the main stream). Clearly, the justification for assuming A 
small is not in this example as readily forthcoming as one might wish; but we 
remark that anyway it would be no great trouble to calculate expressions for the 
stresses without restriction on A if this were thought worth while. 

By means of (7.21) a clear comparison can be made between the magnitudes of 
the pressure component in phase with the wave slope and of the shear-stress 
component in phase with the wave elevation. This comparison has interest in the 
following way. Suppose the wave to be travelling forward slowly, so that although 
c > 0 the present calculations still apply approximately, i.e. we have the second 
special case considered in 8 4. Then each of these stress components does a propor- 
tional amount of work on the wave, the respective rates of energy transfer being 
the same when the stresses have the same magnitude (cf. Lamb 1932, $360). 
According to (7.12) and (7.14), the ratio of the ahear-stress component to the 
pressure component is O(a/A), which is seen from (7.21) to be very small and- 
rather surprisingly-independent of Reynolds number. 

In studies of viscous fluid motion'there is always interest in what happens in the 
limit as the Reynolds number is made to tend uniformly to infinity. It is well 
known that the limiting character of the motion may differ from that according 
to the theory of inviscid fluids. The present approximations evidently improve 
with increasing R,, provided X is fixed; and there is no doubt about their 
remaining valid as R, --f 00. In  this limit we get A = cc = 0, and the boundary- 
layer thickness shrinks to zero, so that (7.11) and (7.12) givep,, = - kaU: COB k[ 
and T~ = 0. This expression for the pressure is that given by ideal-fluid theory 
applied to the (Kelvin-Helmholtz) model of a uniform primary flow extending 
right down to the boundary. 

Next consider a turbulent boundary layer with a velocity distribution approxi- 
mated by the +-power law. For this form of boundary layer, Schlichting (1956, 

Equation (7.19) shows that m8 
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p. 433) gave 6 = 0*37XR?* and U’(0) = 0 . 0 2 9 6 ~ - ~ U ~ R 2 * .  These formulae 
lead to 

(7.22) 

A = 350(kX)3R21, (7.23) 

and a = O*OO92A(kX)-8 R i .  (7.24) 

We recall that the +power law is valid in the range 5 x lo5 < Rx < 107. With such 
values of R,, (7.22) shows the condition ma 3 1 to  be very amply satisfied; and 
(7.23) shows we may have quite large values of kX while still having A -g 1. The 
two requirements are far more readily met than in the previous case. Equation 
(7.24) indicates that the ratio a / A  is again small; hence the action of pressure is 
again more effective than that of shearing stress in supplying energy to a slowly 
moving wave. The results in the limit as R, -f 00 are the same as before. 

Waves progressing with a fair speed in the direction of $ow 

We now turn to the case where there is a critical point U = c at some significant 
distance 7 = re from the boundary. The first task is to decide the correct interpre- 
tation of (7.3) for q < qc: this expression is at  present ambiguous owing to the 
singularity of the integrand at q = qc. The difficulty is common to any uniformly 
valid approximation to the solution of (3.3), and can only be resolved by matching 
q5 to the appropriate solutions of the full Om-Sommerfeld equation which, unlike 
the inviscid solution, remain valid through the vicinity of the critical point. 
(This recalls our remarks following equation (3.3).) As this matter has been very 
fully examined by Lin (1955, chapter 8) and others in the context of stability 
theory, there is no need to go into it in any detail here. The relevant conclusion is 
that (7.3) becomes a physically correct approximation on either side of a narrow 
region surrounding the critical point if, for q < qc, the path of integration is 
indented below the real axis under the singularity. The thickness of the ‘friction 
layer ’ around the critical point is O(kR UL)-* and so may be assumed to be very 
small. The derivatives of (7.3) cease to be valid approximations in this region. 
Note, however, that the approximation to $(q) itself is valid everywhere, as (7.3) 
remains finite at q = qc: thus it is clearly quite safe to use (7.3) in the integral 
expression (3.9) for the pressure. 

The contribution to the integral in (7.3) from an infinitesimal indentation 
under the singularity is readily found by the calculus of residues. This contribu- 
tion will be seen presently to play a crucial part in determining the pressure com- 
ponent in phase with the wave slope; and this result is obviously closely related to 
the matters discussed a t  the end of 0 3, where we recalled the theory of Miles (1957) 
showing that a quasi-sheltering action can arise from the effects of a critical point. 
This is the principal effect due to the integral part of our expression for q5, which 
is otherwise of secondary importance. It appears, therefore, that the usefulness of 
the present approximation can be greatly improved by the slight modification as 
follows, which makes (7.3) give an accurate result at the critical point. 

We first remark that although the integral in (7.3) is to be regarded as a second- 
order term for most values of 7, it becomes dominant near the critical point. For 

13-2 
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and also two paragraphs ago, the whole expression gives the finite value 
= 7, exactly, the integral is infinite; but, as was noted in connexion with (7.6) 

$, = Ak( U ,  - c ) ~  e-kqc/ U:. (7.25) 

Here we write $, = $(ye) and 77:: 3 U’(qc). Now, this will be shown later to be 
a rather poor approximation to $, if A is determined by the boundary conditions. 
A better approximation can be found quite easily by other means, as will be done 
later; and so a useful course is to rewrite (7.3) in the form 

which gives $ -+ $c for q -+ qc, the value of q5c being left undetermined for the 
present. This expression keeps the same status as (7.3) aa a second-order approxi- 
mation in terms of k,  since (7.25) is accurate to a first approximation in k .  

A more explicit form of (7.26) for 7 < 7, readily follows when the substitution 
U - c = U;(q - 7,) + #7,”(q - 7J2  + O(q - v,)~ is made in the integrand. The sin- 
gularity is circuited by a small semicircle under the real axis; and hence we are led 
to the expression 

where B indicates the principal value of the integral. For q > qc, this expression 
is of course to be replaced by (7.26). 

The difference between (7.26) and (7.27) is clearly going to make P, a complex 
quantity when is substituted in the formula (3.9). However, we must also 
anticipate the possibility of quasi-sheltering as a consequence of the exact 
cviscous’ boundary condition on $, which includes the complex quantity 

f ’ ( O ) / f ( O ) .  But, recalling Q 4, we expect the latter effect to be significant only if the 
ratio mc/U’(O) is fairly small and the critical point lies very close to the boundary. 
Nevertheless, this case definitely seems relevant to turbulent flows, for which the 
critical point may lie even inside the viscous sublayer for quite large values of the 
fraction c/U,. (It is of interest to note that a conservative estimate of the thick- 
ness of the sublayer is indicated by U/U, = 5, U, being Prandtl’s friction velocity. 
Thus, the fraction of U, attained at the edge of the sublayer is 5U,lU, = 5ct.  With 
the typical value c f  = 0.0025, this fraction is k.) 

From (7.27) we obtain 
$ ( O )  = -c(A - Q), (7.28) 

In  what follows we take the magnitude of Q to be reasonably small compared 
with unity, which implies (as in our treatment of x earlier) that one wavelength 
reasonably well covers the region of the profile where most of the variation of 
U occurs. (Perhaps a fair estimate-of the order of magnitude of Q would be 
k x (momentum thickness of boundary layer).) Equation (7.27) also leads to 

$’( 0) = U’( 0) ( A  - Q} + 4, Ui ekqc/c, (7.30) 
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where some terms of the order of kcR have been dropped, being negligibly 
small. 

These expressions satisfy the boundary condition (4.12) to a first approxima- 
tion if A = - 1 + a. To obtain a second approximation, we write A = - 1 + R + e 
and, neglecting squares and products of R and e, we obtain from (4.12) 

which may also be written 

(7.31) 

(7.32) 

where we have introduced the Tietjens function D and the notation a = k/m, 
zo = mc/U’(O). It should be noted that the approximation to A thus obtained 
remains valid even when cis so small that the critical point is brought down to the 
linear region of the profile very close to the boundary; for, though the integral in 
(7.29) is then O{kU2/U’(0)  c} and so becomes infinite for c + 0, this order of mag- 
nitude is still small if the critical point is not so extremely close to the boundary 
as to lie well inside the wall friction-layer, i.e. my, is not 4 1. In  fact, for my, = 1, 
this quantity is equivalent to A, which was shown earlier to be small. The 
quantity 8 is also of this order when myc = O(1). 

Hence, eliminating A from (7.26) and (7.27), we obtain 

(7.33) 

where the quantity indicated by ( ) is to be put equal to zero for y < 7,. This 
result is now used in (3.9) to find the pressure at  the wave surface. To estimate the 
pressure component in phase with the wave, it seems justifiable to neglect the 
small quantity B and the integral in (7.33) (the second simplification may be 
justified in the same way as the corresponding step made when proceeding from 
(7.10)). Thus, as an approximation likely to be good enough for most practical 
applications, the amplitude of this component can be expressed 

a%!{<} = - k2a (U - c ) ~  e-kq dy. (7.34) lo* 
The calculation of the component in phase with the wave slope is more 

interesting. Writing its amplitude as (Urn - c)2 kas and assuming 6, to be real, we 
deduce from (7.33) and (3.9) that s = s,+s, where 

(7.35) 
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An estimate of 4, is now needed, together with a check that it is real. By 
integrating (3.3) under the condition 4 -+ 0 for y --f co, it  can be shown (cf. 
Miles 1957, p. 193) that 

u;r$c = k 2 l 7 + c ) ) d y .  (7.37) 

(This relationship is exact; and it has in fact already been noted implicitly in the 
paragraph containing equation (3.12).) A sufficiently accurate approximation 
to q5c is obtained by taking the leading term of (7.33) and using it for 4 on the 
right-hand side of (7.37); thus (7.37) gives 

(7.38) 

which shows 4, to be real in this approximation. This is clearly a much better 
estimate than the value - k( U, - c ) ~  ekqc/ U; given by (7.25) with A + - 1 ; but the 
two become the same for very thin boundary layers. It may be remarked that the 
accuracy of our treatment of the case c = 0 could have been somewhat improved 
by taking a similar estimate for $ ( O )  instead of (7.6); but this scarcely seemed 
worth while. The only changes in the results for that case are readily seen to be as 
follows: A is to be multiplied by the integral I (e.g. in the formula (7.14) for the 
sheltering coefficient); and the expression (7.12) for the shearing stress is also to 
be multiplied by I .  

The component sheltering coefficients can now be expressed in reasonably neat 
forms. Some simplification is allowable if the critical point is assumed to be 
considerably less than a wavelength away from the boundary, so that ekvc + 1. 
This assumption is, of course, consistent with the overall scheme of approxima- 
tion, provided we exclude the unusual case where c is very nearly equal to U,. 
Hence, there finally are obtained 

k2 co 4, = -7J (U-c)2e-kqdy, 
uc qc 

s1= - k7~( U, - c)'- u," J2 ,  (7.39) 
u;3 

where 
u-c 2 

J = (u,-e) e-kq k d y .  

(7.40) 

The separation of s into these two components is interesting since it illustrates 
two physically distinct 'modes' of sheltering. First, s1 represents an effect due 
entirely to the critical point, and is independent of Reynolds number; however, 
we emphasize that s1 is decidedly a real-fluid property, since the singular be- 
haviour of q5 at the critical point-upon which s1 crucially depends-remains 
ambiguous unless the effect of viscosity there is considered. Equation (7.39) 
clearly corresponds to (3.16), and is also equivalent to the expression for the 
sheltering coefficient derived by Miles (1957, equation (5.2)) on the basis of an 
inviscid-fluid model, the ambiguities necessarily entailed by the presence of 
a critical point being resolved in the same way as here (see p. 192 of his paper). 
Note that s1 would usually be positive since U: would usually be negative. 
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On the other hand, s2 essentially depends on the action of viscosity at the 
boundary; and, recalling the result found in 5 5, we may expect that s2 will not be 
positive unless xo is fairly small. If zo is large enough for the asymptotic formula 
(4.14) to apply, then (7.40) gives very approximately 

(7.41) 

where R, is the ‘wave Reynolds number ’ expressible as ch/v if c and h denote the 
dimensional wave velocity and length. Thus, the effect of friction at  the wave 
surface is to decrease the overall sheltering coefficient s for waves travelling with 
a fair speed compared with U,; however, the magnitude of s2 is quite small since, 
to be consistent with other features of the physical model, R, is large. For 
instance, s2 is scarcely significant in comparison with the values of s1 calculated by 
Miles (1957) for some practical examples of wind blowing over sea waves. 

Incidentally, while asymptotic formulae for large zo are being considered, we 
may suitably write down an approximate expression for the shearing stress on 
the boundary. This is easily found by use of the formula (4.14) in conjunction 
with (2.12), writing T,  = R-lf”(0) = R-l{ f”(0) l f (O)} (c-~(O)} ,  where the last step 
follows (3.5) and we have c -  $ ( O )  = BC from (7.33). The result is 

T, = eQni k( U, - c)2 (k/Rc)* J .  (7.42) 

This shows the shearing stress to be of the same order of magnitude as the ‘s2’ 
part of the pressure in phase with the wave slope. The maximum shearing stress 
occurs one-eighth of a wavelength downstream from the wave trough. 

We return to the discussion of the sheltering coefficient, passing now to the case 
where xo is fairly small. The critical point will now lie very close to the boundary 
so that s1 will be practically zero, both because U,” has become extremely small 
and because U l =  U’(0) is large. As mentioned before, this case is exemplified by 
a critical point in the viscous sublayer of a turbulent boundary layer, c being less 
than, say, +Urn. If we put D( - zo) = D,, + iD, and use the definition zo = mc/ U’(O), 
equation (7.40) may be arranged to give 

(7.43) 

This yields a positive value of s2 only when D, < 0, that is when zo < 2.3, this 
result being the same as found in Q 5 for a linear velocity pro6le. Values of the 
quantity in the first curled bracket are tabulated as a function of zo in table 1, 
having been calculated from values of D,, and Di given by Holstein (1950). The 
table shows this quantity to be largest when zo is slightly less than 1, that is, when 
the critical point is at  a distance slightly less than m-1 from the boundary. Note 
that (7.42) remains valid when c + 0; for then J + I (equation (7.15)), and (7.42) 
reduces to s1 = O.644A.l2 in agreement with (7.14) in its modi$ed form ( I  replaced 
by 12) suggested a few paragraphs ago. 

Remembering the significance of the sheltering coefficient with regard to energy 
transfer between the flow and the wave-train, it is interesting to compare the 
various circumstances as the wave speed increases from very small values and the 
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critical point moves away from the wave surface. First, s is positive and s1 is 
negligible; but it becomes negative when 7, increases beyond the small distance 
2.3m-l. A negative value of s implies an energy source within the waves in order 
to maintain c a real constant: without an energy supply the waves would pre- 

8 becomes positive again due to the component s1 outweighing s2. For a logarithmic 
profile, Miles (1957) showed that s1 is a maximum according to a formula like 
(7.39) when ky, = 0.017, which means when yc = 0.0027h. When y, increases 
much beyond this value, s1 decreases very rapidly; and it is possible that s may 
take a small negative value due to s2 again outweighing sl. Finally, we note that 
if c is slightly negative, so that the wave moves against the flow, the theory 
indicates that s is still positive; but the direction of energy transfer reverses with 
the sign of c, so that in this case the waves tend to be damped by the flow. 

sumably be damped by the action of the fiow under these conditions. Eventually 

20 G 20 G 
0 - 0.644 2.5 + 0.089 
0.5 - 1.601 3.0 0.183 
1-0 - 1.458 3.5 0.155 
1.5 - 0.960 4.0 0.088 
2-0 - 0.206 4.5 0.038 

TABLE 1. The function G(zo) = D i / ( ( Q -  zo)a + Dij. 

For a limitingly thin boundary layer and also R -+ 00, it is seen that T,, s1 and s2 
all tend to zero (sl because it is O(k8)) .  In  the limit the only stress on the wave is 
the in-phase pressure given by (7.34): this becomes - ka( U, - c ) ~ ,  which is the 
value according to the Kelvin-Helmholtz theory. 

8. Conclusion 
Validity of the approximate viscow solution 

Properties of the function f(y) have been a vital consideration in many parts of 
this study; and, as remarked near the beginning of 3 4 where the approximation 
to f (7) was introduced, there is a need to examine rather carefully the assump- 
tions forming the basis of this approximation. Several other remarks bearing on 
this matter have already been made; and indeed enough probably has been said 
here and there to cover the main points concerned. However, to round off the 
discussion, it seems desirable to review the assumptions in question, and in 
particular examine the somewhat doubtful case of turbulent boundary-layer 
profiles with large rates of shear near the wave surface. 

We recall that f (7) is a solution of (3 .1)  which, since it diminishes very rapidly 
with increasing y, is approximately a solution of (4.1). The accuracy of the 
approximate equation (4.1) requires that (i) a = k/m is small, and (ii) the ‘linear’ 
region of the velocity profile, over which U = yU’(0) approximately, covers the 
region where the magnitude off(7) is still significant in comparison with its value 
on the boundary. The latter region is O(m-l) in width. In  3 5 where a wholly linear 
profile was considered, condition (i) was seen very clearly to be the only one on 
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which the approximation tof ( r )  depended. This condition would be very well 
satisfied for most physical applications where the Reynolds number is fairly large. 
It implies that the wavelength greatly exceeds the width of the friction layer, and 
so holds for all but extremely short waves. We may note, however, that a physical 
example for which a were O( 1) or greater could be treated very successfully by 
use of the linear-profile model of Q 5, the exact expression (5.3) forf(7) being kept 
intact. This is so because the disturbance would then be confined entirely to the 
region of the friction layer, so that the effects of profile curvature would very 
likely be negligible. 

Condition (ii) need not be interpreted very stringently. For instance, if the 
profile starts to curve appreciably even before r gets much beyond m-l, only the 
‘tail end’ off(q) is affected by the curvature; and presumably the approximation 
based on the linear profile is still reasonably good. The assumption of (ii) will now 
be tested with regard to laminar and turbulent boundary-layer profiles. It will 
be convenient to revert to the dimensional form of notation used in the third 
subsection of Q 7. 

In  a laminar boundary layer along a plane (i.e. the Blasius profile), the velocity 
gradient becomes 10 % less than U’(0) at a distance qlo = 1.54X&*. The size of 
my,, may be regarded as an indication of the validity of the assumption under 
consideration. We have m = [kU’(O)/v]) and U‘(0) = 0-332U:~-~R5*, and hence 
obtain my,, = 2*2(kX)). 

This is quite large if the wavelength is a small fraction of X, as it must be to satisfy 
the assumption of approximately parallel flow. Clearly, condition (ii) is amply 
satisfied in applications of the theory to laminar boundary layers. 

The usual estimate of the thickness of the viscous sublayer in a turbulent 
boundary layer is 5v/U* (e.g. Schlichting 1955, p. 407). The velocity profile is 
almost exactly linear where 7 has less than this value, but its divergence from the 
straight line rU’(0) is not very marked until 7 takes considerably larger values 
(this is best seen by plotting the numerous available experimental measure- 
ments of U(7)  against a linear scale of r ,  instead of the usual logarithmic scale). 
For the present purpose, the value 7 = lOv/U, is still a fairly conservative 
estimate of the limit within which the viscous solution should become small. 
A suitable criterion as required is therefore that lOmv/U, should be at least about 
unity, and of course preferably larger. Since U‘(0) = U”,v = cfU%/v,  this cri- 
terion can be expressed 

or 1 8 * 5 ~ ~ Q ( h U , / ~ ) - ~  > - 1. 

With Motzfeld’s experimental values U,h/v = 330,000 and cf = 0.00173 quoted 
in 4 7, the left-hand side of (8.2) is 0.77. Thus, the approximation is probably still 
reasonably,accurate, although this would appear to be a marginal case. However, 
the value of U, in the experiments (about 80 cmlsec) was somewhat exceptionally 
large. A value U, = 10 cm/sec, for instance, is typical of a light to moderate wind 
over water, the flow being ‘aerodynamically smooth’. With this value of U, and 
the typical value for air Y = 0-17 cm2/sec, the left-hand side of (8.2) is unity for 
h = 107 cm. It could therefore be expected that the approximate viscous solution 
would be quite reliable for waves less than about a metre in length. 
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A generalization by Fourier’8 theorem 

We reconsider (5.6) and (5.9), which express the normal and tangential stresses 
ps  and T~ on a solid or slowly moving wave bounding a uniform shear flow. The 
simple yet somewhat unusual form of these results makes it attractive to 
generalize them, by Fourier’s theorem, so as to apply when the boundary is an 
arbitrary perturbation from a plane. This will provide a particular clear illu- 
stration of the idea, which has been frequently mentioned, that a type of shel- 
tering action occurs even according to linearized theory when the stresses bear 
certain phase relations to the wave. Only the first-order terms in (5.6) and (5.9) 
will be retained, since the terms having a as a factor can be regarded as of 
secondary importance. 

It then follows that if the deformation in the boundary is non-periodic and 
given by 1 

y = C(x) = ; ~ o a { g l ( k ) ~ o s k x + g 2 ( k ) s i n k x } d k ,  

--OD I”, 
p = -- c{g , (k )  cos(kx-Qn)+g,(k)s in(kx-&r)}k-fdk,  

and T~ = ~~om{g,(k)cos(kx+Qn)+g2(k)sin(kx+~n)~k~dk, n (8.6) 

(8.3) 

where, according to Fourier’s theorem, 

gl(k) = C(x)coskxdx, g,(k) = C(x)sinkxdx, (8.4) 

then the stresses are 

(8.5) 

where A = 0.776R4G5 and B = 1-065R-%J%. 
Consider, for example, the case where the boundary profile is the single-humped 

curve 
ab2 

x2 + b2’ 
y = -  (8.7) 

One finds without difficulty that g,(k) = nabe-kb and g,(k) = 0. Hence, (8.5) and 
(8.6) give 

p ,  = - Aab e-kb cos (kx - in) k-f dk 

X 
(8.8) 

SOm 

s,” 
= - AabI’($) ( x 2  + b2)-f cos (8 t an- - -  - &r) ; 

e-kb cos (kx + 9.) kf dk 

(8.9) = +BabI’(+) (x2 + b2)-3 cos ($ t a r1?  + in) . 

To illustrate how the stresses are distributed over the boundary profile, figure 5 
shows graphs of the functions $(x2 + 1)-1, (x2 + 1)+ cos (8 tan-, z - QT), and 
(9 + l)+ cos ($ tan-l 2 + in). The interpretation to be given the three curves is 
perfectly clear in the light of (8.7), (8.8) and (8.9). The figure shows the pressure 
to be everywhere negative (note that -pa is represented), being greatest in 

b 

r, = Bab 

b 
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magnitude slightly on the leeward side of the boundary hump. The shearing 
stress changes sign and becomes negative farther on the leeward side, indicating 
a tendency towards a reversal of the flow some way downstream. These features 
have the same general character as if the flow separated on the downstream side, 
thus causing sheltering in the usually understood sense. Of course, the present 
flow does not separate: the point being emphasized is that an infinitesimal 
disturbance can produce effects similar to those due to separation. 

- -  
FIGURE 5. Graphs of the stresses on a solid hump due to uniform shearing flow in the 
x-direction. The curve shaded underneath represents the boundary profile. The other 
full-line curve represents the shearing stress; and the dashed line represents the (negative) 
pressure. The vertical scale is arbitrary. 

Applications of formube for the surface stresses 
Aside from the intrinsic interest they may have, the various formulae that have 
been developed for the stresses on the wavy boundary offer the possibility of 
usefulness in problems concerning wave generation by the action of a flow. For 
instance, they might be applied to the study of two-dimensional flutter waves on 
a membrane. The present theory has been restricted to real values of the wave 
velocity c ;  but this is relevant to conditions of ‘neutral stability’ under which 
a simple-wave disturbance in a system is propagated unchanged, the factors 
tending respectively to damp or amplify the wave being exactly balanced. 
The determination of neutral conditions is usually the first aim of stability 
investigations. 

Although the principle of the method whereby the stress formulae would be 
applied is perhaps fairly obvious, it  seems worth outlining explicitly. Suppose 
wave formation is expected to occur in a certain deformable body whose interface 
with the fluid is a plane; and suppose the physical properties of the undisturbed 
flow are specified, including the velocity profile. The method assumes the interface 
to be perturbed by a simple wave, of infinitesimal amplitude a and arbitrary wave- 
number k and velocity c, which by appeal to the principle of Fourier synthesis 
covers every physically possible form of infinitesimal disturbance. Now, the 
present formulae provide estimates of the periodic stresses, proportional to a and 
depending on k and c, which the flow exerts against the wave. Hence, complete 
dynamical boundary conditions can be formulated which, together with a kine- 
matical condition expressible in terms of k and c, determine the motion of the 
body. The action of the flow is thus regarded as an influence analogous to, say, 
surface tension-which for a given deformation produces an easily calculable 
normal force. The solution of the separate dynamical problem for the body would 
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in general lead to a relation between k and c, with various physical properties such 
as viscosity or stiffness of the body involved as parameters (in effect, the connexion 
between k and c would emerge as a condition of' self-consistency ' of the dynamical 
system : if cis allowed to be complex, waves with any k and c, are of course possible; 
but for a given k only certain discrete values of c,., if any, are consistent with 
ci = 0). This relation would define the class of neutral waves; and from the result 
there would probably be little difficulty in deciding the combinations of physical 
parameters for which instability may ocour (cf. Feldman (1957), where stability 
conditions involving a large number of parameters are discussed). 

When the second medium is another fluid, strictly speaking another property 
of the wave interface enters the stress formulae, namely /3 (equation (2.9)) which 
relates to  the slipping of particles in the surface relative to their positions on the 
undisturbed plane. However, several reasons have been given why ,8 may be 
negligible; and it would seem that the effect of p would be quite unimportant in 
most problems concerning a gas-liquid interface, i.e. the stresses are the same as 
on a similar wave moving over a flexible solid. Also, one may obviously expect 
the stresses to become approximately the same as on a fixed solid when c is suffi- 
ciently small; but a more precise criterion for this has been seen to be that 
mc/U'(O) should be O(1) or less. 

An alternative approach to problems of wave formation in a two-phase system 
is to set out mathematics at once embracing the whole model, yet likely to be of 
such complexity as to lose sight of physical reasoning. In  contrast, the 'divided 
attack' suggested here has the advantage that a helpful stocktaking from 
a physical viewpoint can be made at the intermediate stage. For instance, it can 
be seen whether or not the surface stresses supply energy to the wave, which 
action is of course necessary for the survival of it neutral wave when the second 
medium is dissipative. Further, the relative importance of the normal and 
shearing stresses can be well understood with reference to energy considerations; 
and a qualitative assessment of the conditions most likely to promote waves 
may be possible even without a detailed study of the mechanics of the second 
medium. Again, the normal stress component in phase with the wave can be 
neatly interpreted as an accession (if the stress is positive) or decrement to the 
inertia of the second medium (we recall that Kelvin-Helmholtz instability is due 
solely to the inertial effects of the upper fluid). 

We emphasize, however, that energy arguments serve best to provide only 
some additional physical insight into problems of wave formation, and are 
preferably not to be relied upon alone for the deduction of stability conditions. 
Energy methods are well known to be unreliable in the classical problems of 
hydrodynamic stability (Lin 1955,s 4.5; Schlichting 1955, p. 313). Solution of the 
linearized dynamical equations is a better course, being concerned with quanti- 
ties of the f i s t  rather than second order in the wave amplitude. If the question is 
wave generation by the action of flow on a mobile boundary, the way is open to 
the latter approach when, as provided here, the interfacial stresses are completely 
known. 
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